Early galaxies in CDM and WDM

Umberto Maio

INAF Italian National Institute of Astrophysics Trieste (Italy)

Outline

1 Introduction

- Motivations
- General overview
- 2 Method
 - Simulations
- 3 Results
 - Early Structures
 - Theory vs. data

・ロト ・四ト ・ヨト ・ヨト

2

4 The End

Rationale: Understand the formation of early galaxies and their link to dark-matter nature

- \rightarrow What is the formation epoch of the first objects?
- \rightarrow What is the role of early molecules and metals?
- \rightarrow What is the role of early populations?
- \rightarrow What are the effects of model assumptions?
- \rightarrow ...in particular of the underlying dark-matter nature?

Requirements: Study the thermal properties of cosmic

medium during cosmological evolution.

Techniques: Detailed numerical simulations

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

Motivations General overview

Primordial environments

Small dark-matter haloes hosting

molecular and metal cooling

Introduction

Method Results The End Motivations General overview

The first "sunshine"

 $\begin{array}{l} \mbox{PopIII stars} \\ \mbox{pristine or very metal poor} \\ \mbox{Z} < Z_{crit} (\sim 10^{-4} \, Z_{\odot}) \\ \mbox{mass range: ? ? ?} \\ \mbox{explosion energies: ? ? ?} \\ \mbox{driving reionization: ? ? ?} \\ \mbox{early MBH seeds: ? ? ?} \end{array}$

 $\begin{array}{l} \mbox{PopII-I stars} \\ metal enriched \\ Z > Z_{crit} (\sim 10^{-4} \, Z_{\odot}) \\ mass range: \sim [0.1; 100] \, M_{\odot} \\ explosion energies: \sim 10^{51} \, erg \\ driving reionization: No \\ early MBH seeds: No \end{array}$

・ 回 ト ・ ヨ ト ・ ヨ ト ・

For a complete picture

 \longrightarrow follow gravity and hydrodynamics $\underline{coupled}$ to molecule formation and metal production from stellar evolution through cosmic time

Simulations

molecules determine <u>first</u> gas collapsing events

metals determine subsequent structure formation

stellar evolution determines <u>yields</u>, $\underline{\gamma}$ and <u>timescales</u>

(ロ) (部) (E) (E) (E)

Following and implementing metal and molecule evolution in numerical codes (e.g Gadget, etc.) required

(Springel, 2001, 2005; Yoshida+, 2003; Tornatore+, 2007; Maio+, 2007, 2010, 2016, 2019;)

Simulations

H/H₂-driven gas collapse (inflows)...

 $z \simeq 6.6$ —

Umberto Maio

Early galaxies in CDM and WDM

Simulations

... star formation and metal spreading (outflows)

$$z\simeq 6.6 \longrightarrow$$

 $z \simeq 2.9$

Umberto Maio

Early galaxies in CDM and WDM

Theory vs. data

WDM and CDM

WDM particle mass: assumed 3 keV (thermal relic)

WDM described by a sharp decrease of P(k) at large k (implications for IGM, lensing, clustering, satellite problem)

What about early epochs?

Perform *ad hoc* simulations of primordial galaxy formation L=10Mpc/h, 2×512^3

Theory vs. data

CDM and WDM star forming sites

molecular-rich star forming knots and filaments

z = 7.33

CDM

WDM

<日 > < 回 > < 回 > < 回 > -

크

Theory vs. data

CDM and WDM structures

Umberto Maio Early galaxies in CDM and WDM

Theory vs. data

CDM and WDM gas entropy state

interplay between cold and hot gas phases

CDM

WDM

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

크

Theory vs. data

CDM and WDM growth

Power(k)

CDM

WDM 3keV

25

30

æ

Early galaxies in CDM and WDM

Umberto Maio

Theory vs. data

Early structures in CDM and WDM

Umberto Maio

Early galaxies in CDM and WDM

Theory vs. data

Baryonic properties in CDM and WDM

Z are little affected, but WDM objects are more bursty than CDM

- fraction of WDM star hosting haloes = 70%, 55%, 40% at redshift z = 7, 10, 15

- fraction of CDM star hosting haloes = 67%, 43%, 17% at redshift z = 7, 10, 15

크

Theory vs. data

UV galaxy luminosities in CDM and WDM

Departures above break magnitude mag_{\star} \simeq -16 \left(\frac{1+z}{10}\right)^{0.2}

At the *faint end* WDM UV LFs are lower than CDM by up to 1 dex sensitive instruments needed to discriminate models in the 1st Gyr

Summary...

- We have presented results from cosmological N-Body hydrodynamical chemistry simulations
- We study early galaxy populations and their interplay with the surrounding environments in CDM and WDM Maio & Viel, 2015; Magg et al., 2016; Villanueva et al. 2018; Ronconi et al. 2020; etc.

Conclusions...

- The high-z Universe is a promising window to explore DM nature, also in light of future instruments
- Baryon evolution of early galaxies is influenced by DM model: gas collapse, SFRs, SMDs in WDM are delayed wrt CDM and show a deficit of faint objects
- Results are not very sensitive to assumed stellar parameters (*Z_{crit}*, metal *yields*, IMF *slope*, wind velocity, etc.)

ロトメロトメミトメミト・ミ