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Microlensing of an extended star by an extended lens

A number of gravitational microlensing surveys have been conducted to search for primordial black holes (PBHs) in nearby dark matter halos
(Nilkura et al, Nat. Astron. 2018). In many DM models, spatially extended structures are predicted in the form of exotic compact objects
and subhalos. Examples include axion miniclusters, ultracompact minihalos, boson stars, mirror stars, etc. Establishing mircolensing limits
on these extended DM structures requires us to to recast the existing microlensing limits on PBHs. One essential step is to investigate the
microlensing signal produced by a non-pointlike lens (Croon et al, PRD 2020).

An important scale in gravitational lensing is the Einstein radius RE =
√

4GMDS
c2 x (1− x), where M is the lens mass and x ≡ DL/DS with

DL and DS the lens-observer and source-observer distance. We shall express physical length scales by upper case letters and dimensionless
length scales in unit of RE by lower case letters. On the lens plane, the lens size and source size are r90 and rS = xR?/RE respectively.

The geometry of the setup is depicted in the figure below, with u being the lens-source distance, ū(ϕ) =
√
u2 + r2

S + 2urS cosϕ being the

distance from a point on the edge of the source to lens.

For every infinetesimal point on the edge of the source, the lensing equation which relates the true position of the point and the image can
be written as ū(ϕ) = t(ϕ)−m(t(ϕ))/t(ϕ), where m(t) is the projected lens mass enclosed within t. The magnification of each images is
(Witt et al, APJ 1994)
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where η = sign(dt2i/dū
2|ϕ=π) is the “parity” of the image. The total magnification µtot is the sum of individual µi. In typical microlensing

surveys, an event is called if the magnification exceeds 1.34. By numerically solving these equations, we find the impact parameter u1.34
corresponding to µtot = 1.34. For NFW subhalos and boson stars, we obtain u1.34 as a function of r90 and rS in the figure below.

Results

If the mass fraction of lenses in the DM halo is fDM and all the lens have an identical mass M and size R90, the lensing rate of a particular
background star with size R? is given by (Griest, APJ 1990)
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where ρ(x) is the local DM density projected along the line of sight, ε is the detector efficiency, vE(x) = 2u1.34(x)(x)/tE and v0 is the
DM circular velocity. The expected number of events is

Nevents = N?Tobs
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where N? is the number of stars, Tobs is the net observation time, and dn/dR? is the (normalized) stellar radius distribution of the source
stars. The Subaru-HSC survey is towards M31, and we take dn/dR? derived in (Smyth et al, PRD 2019). At 95% CL, the survey finds
Nevents ≤ 4.74 and we show the corresponding upper limits on fDM in the figure below. Deviations from PBHs limits become visible for
lens size larger than O(0.1R�), and lenses up to O

(
103R�

)
can be probed by Subaru-HSC. Constraints from EROS-2 and OGLE-IV

surveys are also shown.
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