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Abstract

In this work we present the use of Bayesian Neural Net-
works (BNNs) to predict the posterior distribution for four
astrophysical and cosmological parameters from the 21cm
signal. Besides achieving state-of-the-art prediction per-
formances, the proposed methods provide accurate esti-
mation of parameters uncertainties and infer correlations
among them. Additionally, we demonstrate the advantages
of Normalizing Flows (NF) combined with BNNs, being
able to model more complex output distributions and thus
capture key information as non-Gaussianities. Finally, we
propose novel calibration methods employing Normalizing
Flows after training, to produce reliable predictions, and
we demonstrate the advantages of this approach both in
terms of computational cost and prediction performances.

1 The 21cm signal

The 21cm signal from the neutral hydrogen in the inter-
galactic medium (IGM) is described through its brightness
temperature contrast, δTb, relative to the CMB [1]

δTb ≈ 3.3(1 + δm)xHI
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(1)
where TS and Tγ(z) are the gas spin and the CMB tempera-
tures at redshift z respectively, δm the density contrast of
baryons, and xHI denotes the neutral fraction of hydrogen.
The contrast density strongly depends on the cosmologi-
cal parameters, while the HI ionized field parametrized by
xHI is determined via different astrophysical parameters.
Therefore, 21cm observations have the potential not only to
constrain fundamental cosmology, but also to provide ano-
ther window into the properties of the IGM and the first
galaxies and stars [1].

2 Variational Inference and BNN

We will focus on a variational inference approach which
approximates the posterior distribution p(w|D) by an vari-
ational distribution q(w|θ), depending on a set of parame-
ters θ [2]. The objective can then be formalized as finding
θ that makes q as close as possible to the true posterior, for
instance by minimizing the KullBack-Leibler (KL) diver-
gence between the two distributions [2]

KL(q(w|θ)||p(w|D)) ≡
∫

Ω

q(w|θ) ln
q(w|θ)

p(w|D)
dw. (2)

Using the Bayes theorem, one finds that minimizing Eq. (2)
is equivalent to minimizing the following objective function

KL(q(w|θ)||p(w))−
∑

(x,y)∈D

∫
Ω

q(w|θ) ln p(y|x,w)dw.

(3)
If the network is minimized at θ̂, the probability distribution
of y∗ for a new input x∗ can be written as [2]

qθ̂(y
∗|x∗) =

∫
Ω

p(y∗|x∗,w)q(w|θ̂)dw, (4)

while the covariance of the variational predictive distribu-
tion, for a fixed x∗ is [3, 4]

Covqθ̂(y
∗,y∗|x∗) ≡ Eqθ̂[y

∗y∗T|x∗]− Eqθ̂[y
∗|x∗]Eqθ̂[y

∗|x∗]T.
(5)
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Figure 1: Representation of BNN [4].

3 Dataset

We have created 6000 brightness temperature images with
resolution 1.5 Mpc through the semi-numerical code 21cm-
Fast [5]. We varied two parameters corresponding to the
cosmological context: the matter density parameter Ωm ∈
[0.2, 0.4] and the rms linear fluctuation in the mass distri-
bution on 8h−1Mpc σ8 ∈ [0.6, 0.8], and the other two pa-
rameters corresponding to the astrophysical context: the
ionizing efficiency of high-z galaxies ζ ∈ [10, 100] and the
minimum virial temperature of star-forming haloes T Fvir ∈
[3.98, 39.80] × 104K (hereafter represented in log10 units).
For each set of parameters we have produced 20 images at
different redshifts in the range z ∈ [6, 12], and stacked these
redshift-images into a single multi-channel tensor [4, 6].

Figure 2: The images have size of (128, 128, 20), where
the channel stands for the redshift.

4 Implementation

We use Tensorflow [7] for building modified VGG16 archi-
tecture, along with tf.probabilities for adding a multivari-
ate normal distribution in the last layer of the NN, and the
NN is trained with Adam-optimizer. The last layer is dense
with output corresponding to a multivariate Gaussian distri-
bution. We trained the network both with and without the
Normalizing Flows.

5 Metrics

We quantify the performance of the network by its high pre-
diction of the parameters and accurate uncertainties. The
high prediction is evaluated via coefficient of determination

R2 = 1−
∑

i(µ̄(xi)− yi)2∑
i(yi − ȳ)2

(6)

where µ̄(xi) is the prediction of the trained network , ȳ
is the average of the true parameters and the summations
are performed over the entire test set. On the other hand,
well calibrated networks means that yi should fall in a β%
confidence interval approximately β% of the time, where
β = {68.3, 95.5, 99.7} corresponding to 1, 2, and 3σ confi-
dence levels of a normal distribution.

6 Calibration

1. Fine-tuning: Regularization for the scale of the varia-
tional distribution in Flipout.

2. Using NF (figure1), following two possible paths:

(a) Retrain the best model found so far by including NF in
the output of the network to minimize NLL.

(b) Calibrate the network with a post-processing calibra-
tion approach, by fine-tuning the last layer of the net-
work and minimizing again the NLL transformed by
NF.

At the end, we will compare the resulting networks.

7 Results

We consider different kinds of Normalizing Flows acting
on the output distribution of a BNN: the inverse autoregres-
sive Flow(IAF), Masked Autoregressive Flow (MAF) and
non-volume preserving flows (NVP). We observed that the
R2 are comparable for all methods, but the NLL is higher
for the IAF, which means that this method tends to recover
better accuracy in the uncertainties.

The improvement of the NLL leads to better calibrated net-
works, validated thought the coverage probabilities as we
observe in the following table:

IAF (NLL=-3.8) MAF (NLL=-3.73)
σ8 Ωm ζ T Fvir σ8 Ωm ζ T Fvir

R2 0.94 0.98 0.87 0.98 0.94 0.98 0.87 0.98
C.L. 68.3% 66.0 64.0 69.2 65.4 64.7 63.7 69.1 65.0
C.L. 95.5% 94.0 94.0 95.0 94.0 93.3 94.2 95.1 94.0
C.L. 99.7% 99.2 99.2 99.5 99.6 99.0 99.3 99.3 99.4

7.1 Parameter constraint contours

In order to show the parameter intervals and contours from
the Epoch of Reionization dataset, we choose randomly one
example from the test set. The two-dimensional posterior
distribution of the parameters are shown in Fig. 3 and the
parameter 95% intervals are given by:

σ8 Ωm ζ T Fvir
IAF 0.670+0.037

−0.033 0.375+0.021
−0.021 82.00+20.00

−10.00 5.142+0.072
−0.070

MAF 0.667+0.031
−0.029 0.382+0.015

−0.016 84.00+10.00
−10.00 5.179+0.066

−0.068

Example true value 0.652 0.372 88.847 5.096

We can observe that after calibration, the contours produced
by MAF becomes wider solving the underestimation found
during training. Moreover, the contours of MAF and IAF
applied in calibration overlap, and they are smaller com-
pared with the base experiment, while Flows applied during
training produce better results only for IAF.

0.62 0.66 0.70
8

4.55

4.60

4.65

4.70

TF vi
r

40

50

60

70

80

0.27
0.28
0.29
0.30
0.31

m

0.28 0.30
m

40 60 80 4.6 4.7
TF

vir

0.62
0.64
0.66
0.68
0.70

8
IAF MAF Non_Flow IAF_calibrate MAF_calibrate

Figure 3: 68% and 95% contours from one example of
our synthetic 21cm dataset.

8 Conclusions

We presented the first study using BNNs and Normalizing
Flows to obtain credible estimates for cosmological param-
eters from 21cm signals. These methods offer alternative
ways different from MCMC to make inference and recover
the information in the 21cm observations.
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