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12.0: take the moments of the Boltzmann equation to derive the fluid equations. Use:
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m
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12.1 Show that the stress tensor a;;{ [Eq. (12.17)] vanishes for a “cold” distribution func-
tion of the form Eq. (12.9).

12.2 Use Eq. (12.23) to derive an equation for the vorticity @ = V x uy, of the matter
velocity. Show that no vorticity is generated if it is absent in the initial conditions.
How does an initial vorticity evolve in time at linear order?

12.3 Fill in the missing steps of the transtormation of the Euler—-Poisson system into
Fourier space, Eq. (12.31).

12.4 Use the equation for the linear growth factor Eq. (8.75) to prove Eq. (12.32). Note
that this relation holds for any smooth dark energy model. Next, use this to trans-
form Eq. (12.31) into Eqgs. (12.33)—(12.34).

Equation numbers refer to Modern Cosmology, second edition.
However, the relevant ones should be indicated on the lecture slides as well



12.5

12.6

12.7

12.8

Equation numbers refer to Modern Cosmology, second edition.
However, the relevant ones should be indicated on the lecture slides as well

Use the solution in Eq. (12.40) to show that the NLO contribution in Eq. (12.42) is
given by Eq. (12.48). Derive and use the relations

Fr(k, —k) =0,
Fn(kla"' akn):Fn(_kla"' 7_kl’l)' (12105)

Evaluate the terms numerically. For PU3, the expression of the kernel given in
Makino et al. (1992) is useful. For P?*?, care needs to be taken when k — p becomes
close to zero. Bertschinger and Jain (1994) provide a neat decomposition of the in-
tegral which is numerically robust.

Derive the leading contribution to the matter bispectrum, Eq. (12.51). How does
this look in the diagram form of Fig. 12.3?

In Sect. 12.2, we developed perturbation theory based on the density field. An alter-
native, Lagrangian approach is based on the equations of motion for N-body “par-
ticles,” Eq. (12.57). In this exercise, you will derive the lowest-order result, known
as Zeldovich approximation. The solution to Eq. (12.57) is a particle trajectory x (n).
We write this as

x(n)=q+s(q,n), (12.106)

where ¢ is the initial position at n = 0, when all perturbations were negligible. Hence
s(q,0) = 0. Rewrite Eq. (12.57) as an equation for s. Now expand to linear order in s.
Solve the equation by using the solution of the Poisson equation for W at linear or-
der. Your result should relate sV (k, n) to V) (k, ). This result can be used to obtain
the initial small displacements of particles to start an N-body simulation. We also
need their initial momenta p'. Derive these in terms of the displacement as well.
Derive an expression for the enclosed mass M (< r) for the NFW profile Eq. (12.62).
Replace r; with the concentration ca. Use this to derive R for a given mass M and
concentration, and solve for p,. You now have a reasonably accurate expression for
the density profile of a halo of mass M and concentration ca. Plot the profile for a
halo of mass M»yy = 102 M (A = 200), and for concentrations cagg € {4, 8, 16}. That
is, make the plot for Sect. 12.4.1 that we were too lazy to create!



12.9 Derive the spherical collapse threshold §.; and the virial overdensity A by solving
Eq. (12.67) without considering A. Follow these steps:
(@) Show that Eq. (12.67) can be rewritten as

(12.107)
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where r;, p; are, respectively, the radius of the spherical region and the back-
ground matter density at the initial time, and §; is the initial overdensity.
(b) Show that, when the initial expansion rate is given by #; = H;r;(1 — §;/3), the
maximum radius r¢, (the turn-around radius) that the spherical region reaches
is given by
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() Show that the parametric solution (cycloid) of Eq. (12.68) is a solution of
Eq. (12.107). What is #¢, in terms of the initial conditions, r;, §;, p;?

(d) Find the expression for the nonlinear overdensity §(9). What is the nonlinear
density contrast at the time of turn around? Plot §(¢) as a function of §)(¢), the
initial overdensity evolved forward using the linear growth factor. Derive the
expansion of §(6(1) to third order in §V.

(e) Assume that, by some magic (which we call violent relaxation), the object viri-
alizes. Find the virial radius in terms of the turn around radius. Using that, give
the density contrast Ayj; = 1 + 8(#vir) expected after virialization. Assuming that
collapse is completed at 6 = 2 [that is, t;; = 1(6 = 27)], what is the value of

Equation numbers refer to Modern Cosmology, second edition. 5 (¢) at collapse? This is the collapse threshold 8¢y

However, the relevant ones should be indicated on the lecture slides as well
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12.10 Derive the correlation function of thresholded regiongEq. (12.82) in the linear den-
sity field.

(a)

(b)

Define the scaled density field v(x) = Sg)(x) /o (R) (note that this is a field, and
not to be confused with the parameter v = §.;/0 (R), which we shall indicate
with v¢r in this exercise). Show that v(x) at an arbitrary fixed location follows
the normal distribution

1 2
p(v) = e V2, (12.109)
21

and that the joint distribution of v, v,, where v; = v(x;), is a bivariate Gaussian

1 1
p(v(x1), v(x2)) = exp [—E(vl, v2) ' C vy, Vz)] (12.110)
2 \[1— €3 /o4(R)
_ 1 £12/0*(R) )
where C_( £12/02(R) i (12.111)

and £, = ‘51(?1)(|x1 —x3)) = (82) (x1)8§e1)(x2)> is the correlation function of the lin-

ear, smoothed density field.
Using this result, show that the one-point probability (or volume fraction) be-
comes

1 v
WS 5.)= —erfc| —= ) . 12.112
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Here, ver = §cr/0(R) and the complementary error function is defined in
Eq. (C.31). Obtain the corresponding expression for the joint probability

p (89 (e1) > 8er, 8 (¥2) > 8er) (12.113)

and for &y, (r) from Eq. (12.82). Notice that one of the two integrals can be done
analytically.
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(c) Using the fact that the matter correlation function goes to zero at large r, ex-
pand your result in the small quantity &£(r). Show that the first two terms can be
written as Eq. (12.83), and derive the expression for b, and b,, as well as their
limiting form for very rare halos, v > 1.



12.11 Continue the expansion in Eq. (12.80) to second order in é,. The second-order bias
is defined by

1
Sh.e = b18¢ + §b25§+.... (12.114)

What is the expression for b, in terms of o (M, z) and f (v)? Derive b, (v) for the Press—
Schechter mass function Eq. (12.73).

12.12 Derive the second-order perturbation theory kernel for the galaxy density 8§2).
(a) Define the scaled tidal field through

1
Kij(x,n) = —5ijv2] W (x,n). (12.115)

47 Ga?(n) [ R
Use this definition to relate K;; is to the matter density in real and Fourier space.
(b) Begin with the real-space expression of the second-order galaxy density,

1 y
S (x.m) =518 + -by (D) + by Ki KDY, (12.116)

where on the right-hand side all fields are evaluated at (x, n), and the bias pa-
rameters by, by, bg2 are defined at n. Why does the tidal field only appear at
second order and in this particular combination? Now pull out the time depen-

dence contained in the growth factors, and Fourier transtorm Eq. (12.116) to
arrive at Eq. (12.87).
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