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Motivation

• The large-scale structure (LSS) is 
historically one of the key probes of 
cosmology

• Now, we are really in a golden age of LSS 
with plenty of experiments under way: 
eBOSS, DES, DESI, PFS, SphereX, Euclid, 
WFIRST, ...

Peebles; Efstathiou+ ’90 predicted a positive cosmological 
constant Λ from LSS observations



Motivation
• Using large-scale structure, we can learn about

• Inflation (or, which mechanism generated seeds of 
structure ?)

• Dark Energy and Gravity (is General Relativity 
correct ?)

• Dark Matter (does it cluster as expected ?)

• the formation history of galaxies, clusters, and the 
IGM

• Uniquely broad set of science opportunities!

• As first demonstrated by 2dF and SDSS



Motivation

• Inflation: reconstruct the properties of the initial 
conditions, and look for gravitational waves

• Dark Energy and Gravity: the growth of 
structure depends sensitively on the expansion 
history of the Universe, and the nature of 
gravity 

• Dark Matter: how “cold” is cold dark matter ? 
What is the sum of neutrino masses ?

D
00 + aHD

0 = 4⇡G ⇢̄DGrowth equation:
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Challenge: unlike the CMB, 
every data point is nonlinear!

Hubble UDF



Challenge: unlike the CMB, 
every data point is nonlinear!

Hubble UDF

Chapter 1 • The concordance model of cosmology 11

FIGURE 1.8 A slice through the distribution of the main galaxy sample in the northern part of the SDSS survey, with
us the observers situated at the bottom center (z = 0). Each dot depicts the position of a galaxy, with color chosen
to represent the actual color of the galaxy (i.e., red (dark gray in print version) dots correspond to redder galaxies).
Image Credit: Michael Blanton and the Sloan Digital Sky Survey (SDSS) Collaboration.

The galaxies in Fig. 1.8 are clearly not distributed randomly: the universe has structure
on large scales. To understand this structure, we must develop the tools to study pertur-
bations around the smooth background. We will see that this is straightforward in theory,
as long as the perturbations remain small. To compare theory with observations, we must
thus try to avoid regimes that cannot be described by small perturbations. As an extreme
example, we can never hope to understand cosmology by carefully examining rock forma-
tions on Earth. The intermediate steps—collapse of matter into a galaxy; star formation;
planet formation; geology; etc.—are much too complicated to allow comparison between
linear theory and observations. In fact, perturbations to the matter on small scales (less
than about 10 Mpc) have become large in the late universe; that is, the fractional den-
sity fluctuations on these scales are not small, but comparable to or larger than unity. We
say that these scales have grown nonlinear. On the other hand, large-scale perturbations
are still small (quasi-linear). So they have been processed much less than the small-scale
structure. Similarly, anisotropies in the CMB are small because they originated at early
times and the photons that we observe from the CMB do not clump on their way to us.
Because of this, the best ways to learn about the evolution of structure and to compare
theory with observations are to look at anisotropies in the CMB and at large-scale structure
(LSS), i.e. how galaxies and matter are distributed on large scales. However, we will learn
in Chs. 12–13 that valuable cosmological information can also be extracted from smaller,
nonlinear scales provided we choose our observables wisely.

It is paramount therefore to develop statistics that can empower us to compare maps
like that shown in Fig. 1.8 to theories while isolating large scales from small scales. For this
purpose, it is often useful to take the Fourier transform of the distribution in question; as
we will see, working in Fourier space makes it easier to separate large from small scales.
The most important statistic in the cases of both the CMB and the large-scale structure



Preliminaries
• In bulk of lectures, we’ll be assuming “vanilla” 

Euclidean (flat) ΛCDM cosmology

• Gaussian, adiabatic, almost scale-invariant initial 
perturbations

• Dark Energy equation of state w=-1, although 
results hold for general smooth DE as well

• Mostly neglect effect of massive neutrinos

• We will (hopefully) discuss the effect of going beyond 
these assumptions in the 5th lecture
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FIGURE 5.1 The ways in which the different components of the universe interact with each other. The connections
are encoded in the coupled Boltzmann–Einstein equations. The tight coupling between electrons and nuclei through
Coulomb scattering allows us to treat them as a single component, for which we use the conventional name baryons.
We do not consider perturbations to the dark energy (which are absent in the case of the cosmological constant), so
dark energy only enters in the background metric.

5.1 The collisionless Boltzmann equation for photons
We begin with the Boltzmann equation for photons. We have derived the left-hand side of
this, at linear order in perturbations, in Sect. 3.3.3, leading to Eq. (3.74):
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To go further we must now expand the photon distribution function f about its zeroth-
order Bose–Einstein form. We will do this in a way that may seem odd at first. Let us write

f (x,p, p̂, t) =
[

exp
{

p

T (t)[1 + $(x, p̂, t)]

}
− 1

]−1

. (5.2)

Here the zeroth-order temperature T is a function of time only, not space. In the smooth
universe, photons are distributed homogeneously, so T is independent of x, and isotropi-
cally, so T is independent of the direction of propagation p̂. Now that we want to describe
perturbations about this smooth universe, we need to allow for a perturbation to the dis-
tribution function, which is characterized by the fractional temperature perturbation $,
which could also be called δT/T . $ allows for inhomogeneities in the photon distribution
(it depends on x) as well as anisotropies (it also depends on p̂). Recall from Sect. 1.5 that
in the end we observe the temperature perturbations on our “CMB sky.” That is, what we
measure is $ as a function of p̂, which is the arrival direction of the photon, at a fixed
location xEarth and time t0: δT/T (p̂) = $(xEarth, p̂, t0).

Note that we assume here that $ does not depend on the magnitude of the momen-
tum p. We will soon see that this is a valid assumption at the order we work in, following

Gravity       <->         Matter
(Einstein eq.)        Boltzmann equations
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Preliminaries

• Baryons and CDM are “cold”: the constituent 
particles are non-relativistic

• Most of structure formation happens well 
within the Hubble horizon: sub horizon 
approximation 

• These two facts simplify equations substantially!

• Can often use our intuition for Newtonian 
gravity



Preliminaries
• Will not study early universe 

evolution here

• Early evolution starts when 
perturbation “enters the horizon”

• Evolution depends on whether 
this happens in radiation 
domination (slower growth) or 
matter domination (faster 
growth)

• Small-scale modes enter horizon 
earlier

198 Modern Cosmology

FIGURE 8.2 The evolution of dark matter density perturbations in the fiducial !CDM cosmology. We have normal-
ized to the potential at early times as in Fig. 8.1. The amplitude of each mode starts to grow upon horizon entry. Well
after aeq, all sub-horizon modes evolve identically, and scale as the growth factor D+(a). During matter domination,
before ! becomes relevant, D+(a) = a. At the very latest times, we can see a slight suppression from this linear trend
due to the onset of accelerated expansion.

perturbations at late times. This growth is completely consistent with our intuition that,
as time evolves, overdense regions attract more and more matter, thereby becoming more
overdense.

In the late universe, baryons closely follow the dark matter, so we typically describe
them together in form of the total matter overdensity δm. So let us now express the power
spectrum of the matter distribution in terms of the primordial power spectrum generated
during inflation, the transfer function, and the growth factor. The simplest way to relate
the matter overdensity to the potential at late times is to use Poisson’s equation (6.80) in
the large-k, no-radiation limit,

k2#(k, a) = 4πGρm(a)a2δm(k, a) (a > alate, k ! aH) . (8.5)

This equation is no longer correct if k is of order aH or less. For large-scale structure appli-
cations, this is not a big worry, as the most precise measurements are for modes that satisfy
k ! aH .2

Now, the background density of matter (including baryons) is ρm = &mρcr/a
3, and

4πGρcr = (3/2)H 2
0 , so

δm(k, a) = 2k2a

3&mH 2
0

#(k, a) (a > alate, k ! aH). (8.6)

2
Moreover, Eq. (8.5) does hold on all scales if δm on the right-hand side is defined in synchronous-comoving

gauge (see Exercise 5.1). The density in this gauge is in many cases more directly related to observables and
simulations than δm in conformal-Newtonian gauge.

Evolution of modes of different 
wavelengths at early times (k=2π/λ)

Cold dark matter component only



Notation

• Comoving coordinates:

• Conformal time:

• Comoving distance:

• Particle velocity/momentum:

• Fluid velocity; divergence:

• Gravitational potential:

D
Symbols

D.1 Mathematical and geometrical definitions

Symbol Explanation

ḟ (x, t) ≡ ∂f (x, t)/∂t Partial derivative with respect to time
f ′(x,η) ≡ ∂f (x,η)/∂η Derivative with respect to conformal time
φ,α ≡ ∂φ(x)/∂xα Partial derivative with respect to coordinate xα

δν
α , δij Kronecker symbol

δ
(n)
D (k − k) Dirac-delta distribution in n dimensions

êx,y,z Unit vector in direction of three spatial Cartesian axes
n̂ 3D unit vector (full-sky position)
θ 2D Euclidean vector (flat-sky position)
d' Solid angle integration measure

Throughout, spatial indices ijk . . . are raised and lowered with δij .

D.2 Frequently used relations
Frequently used time integration measures are

dη = dt

a(t)
= da

a2H(a)
= d lna

aH(a)
. (D.1)

For light rays, we further have

dχ = −dη = dz

H(z)
. (D.2)

Our convention for the perturbed FLRW metric is (Eq. (3.49))

g00(x, t) = −1 − 2)(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2*(x, t)] . (D.3)
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Primes denote derivative w.r.t conformal time



Cold Dark Matter 
cosmology in a nutshell

Millennium simulation / MPA

• Large-scale fluctuations are 
small (still linear today)

• Structure forms hierarchically 
from small to large scales

• Perturbative expansion in 
fluctuations on large scales

• Simulations of large volumes 
can assume background 
cosmology
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• Assume we observe the matter density 
field

• Given cosmological parameters θ, theory 
predicts 

1. Statistics of initial conditions (Gaussian)

2. How a given          evolves into the final 
density field δ

• In cosmology, we are always dealing with 
statistical fields! 

⇢(x) = ⇢̄[1 + �(x)]
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How do we compare 
theory with data?

δ: fractional matter density perturbation



Characterizing 
Statistical Field

• Consider δ(x), and its Fourier-space version δ(k)

• Simplest statistical field: the field values at each point are 
independent Gaussian random variables (with vanishing mean)

• In cosmology, we often encounter these simplest fields - 
where we have independent Fourier modes

• Statistics of field is completely described in terms of the 
variance of the Fourier modes, as a function of k: the power 
spectrum

h�(k)�⇤(k0)i = (2⇡)3�D(k � k0)P (k)
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FIGURE 12.1 Standard deviation σW =
√〈

δ2
W

〉
of the linear matter density field at z = 0 smoothed with real-space

tophat and sharp-k filters, as a function of the smoothing scale R. When filtered on a large scale, the fluctuations
of the density field are small, while fluctuations on small scales become large. Evaluating the black solid curve

at R = 8h−1 Mpc yields the commonly used amplitude parameter σ8. We also show the RMS value
√〈

#2
W

〉
of the

gravitational potential multiplied by 104. The potential fluctuations are very small on all scales.

Clearly, we have to do better. Notice also that the precise filter shape is not important for
this conclusion, as any reasonable filter leads to the same trend.

We can also compute the variance of metric perturbations $ as a function of scale. This
is also shown in the figure. Interestingly, the typical potential fluctuations remain small,
! 10−4, on all scales.3 This is easy to understand: the integral in Eq. (12.4) is dominated by
high wavenumbers k, and peaks near the scale picked out by the filter W . On small scales,
then, the integral is dominated by contributions where k " aH ∼ 3 · 10−4 h Mpc−1, that
is, spatial scales that are much smaller than the Hubble radius. Then, the first term in the
Poisson equation (12.1) is by far the dominant one (note that #′ is at most of order (a′/a)#),
and it simply becomes

−k2$ = 4πGa2ρmδm. (12.5)

This is the well-known Poisson equation of Newtonian gravity, with additional factors of a

because the wavenumber k is in comoving units. Thus, the magnitude of $(k) is propor-
tional to δm(k)/k2, and so is highly suppressed compared to the density on small scales.
This explains why the typical potential fluctuations in the universe remain small even
though density fluctuations become large. Another way to see the same result is to recall
the evolution of potential and density during matter domination: the potentials remain
constant, while the density perturbations grow as the linear growth factor D+(η) ∝ a(η).

We can use this result to our advantage. First, given the smallness of spacetime pertur-
bations, we can continue to work to linear order in the potential $. This means that the

3
Technically,

〈
#2

W

〉
diverges logarithmically when including modes with k → 0. Only potential perturbations

within our current horizon are observable, so we have used a cutoff kmin = 10−4 hMpc−1. The precise value of
this cutoff has a very small impact on the numerical result.

• So let’s characterize large-scale matter 
density field

• Consider variance of matter density field 
filtered on different scales:  

• Variance is small for large             
smoothing scales
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where on the right-hand side of the Poisson equation we have only included matter. This
is justified since at redshifts z ! 10, where structure begins to become nonlinear, the con-
tribution of radiation is negligible. This is not entirely true for neutrinos, which contribute
at the percent-level, because they have a finite mass and thus become non-relativistic.
Including neutrinos, however, would not change our main arguments in the following.
Further, we can set ! = −", since the late universe has negligible anisotropic stress.2

Before jumping into the calculation of nonlinear growth, let us pause to consider which
scales we will be dealing with. After having solved the linear evolution equations in Ch. 8,
we are able to calculate the typical amplitude of linear matter density fluctuations on a
given scale. Let us define the filtered density field δW(x),

δW(x) =
∫

d3y W(|x − y|)δm(y), (12.2)

where W(x) is the filtering kernel that we can take to be isotropic so that it only depends
on the magnitude of x − y. This filtering corresponds to a multiplication in Fourier space:

δW(k) = W(k)δm(k), (12.3)

where W(k) is the Fourier transform of the isotropic filtering kernel (in this chapter, we will
move back and forth between real and Fourier space. Any ambiguity is removed, however,
by the arguments of functions or the explicit appearance of factors of k). Notice that a filter
that is normalized in real space via

∫
d3xW(x) = 1 obeys W(k = 0) = 1 in Fourier space. It

could be, for example, a Gaussian with width $k, which corresponds to a Gaussian with
width R = 1/$k in real space. Then, the variance of this filtered density field is directly
related to the matter power spectrum (as you can derive in Exercise 8.13):

σ 2
W ≡

〈
(δW)2(x)

〉
=

∫
d3k

(2π)3

∫
d3k′

(2π)3

〈
δW(k)δ∗

W(k′)
〉
ei(k−k′)·x

=
∫

d3k

(2π)3 PL(k)|W(k)|2

= 1
2π2

∫
d lnk k3PL(k)|W(k)|2. (12.4)

The result is shown in Fig. 12.1: when smoothed on a large scale, density fluctuations are
small, while they become large when we filter on a smaller scale. For a sufficiently small
filter scale, σ 2

W becomes greater than 1. This means that, when we look at our universe
on a sufficiently small scale, i.e. with sufficiently high resolution, any given point is likely
to have a density that is very different from the cosmic mean. That means that our linear
treatment based on Eq. (12.1) predicts a wrong result for the density field in most places.

2
We choose to work with " in the following, as the perturbation to the time-time component of the metric is

what physically governs the motion of non-relativistic matter. When comparing to the literature, keep in mind
that different notation (e.g., ! instead of ") and different sign conventions are common.

Characterizing 
Statistical Field
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where on the right-hand side of the Poisson equation we have only included matter. This
is justified since at redshifts z ! 10, where structure begins to become nonlinear, the con-
tribution of radiation is negligible. This is not entirely true for neutrinos, which contribute
at the percent-level, because they have a finite mass and thus become non-relativistic.
Including neutrinos, however, would not change our main arguments in the following.
Further, we can set ! = −", since the late universe has negligible anisotropic stress.2

Before jumping into the calculation of nonlinear growth, let us pause to consider which
scales we will be dealing with. After having solved the linear evolution equations in Ch. 8,
we are able to calculate the typical amplitude of linear matter density fluctuations on a
given scale. Let us define the filtered density field δW(x),

δW(x) =
∫

d3y W(|x − y|)δm(y), (12.2)

where W(x) is the filtering kernel that we can take to be isotropic so that it only depends
on the magnitude of x − y. This filtering corresponds to a multiplication in Fourier space:

δW(k) = W(k)δm(k), (12.3)

where W(k) is the Fourier transform of the isotropic filtering kernel (in this chapter, we will
move back and forth between real and Fourier space. Any ambiguity is removed, however,
by the arguments of functions or the explicit appearance of factors of k). Notice that a filter
that is normalized in real space via

∫
d3xW(x) = 1 obeys W(k = 0) = 1 in Fourier space. It

could be, for example, a Gaussian with width $k, which corresponds to a Gaussian with
width R = 1/$k in real space. Then, the variance of this filtered density field is directly
related to the matter power spectrum (as you can derive in Exercise 8.13):

σ 2
W ≡

〈
(δW)2(x)

〉
=

∫
d3k

(2π)3

∫
d3k′
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〈
δW(k)δ∗

W(k′)
〉
ei(k−k′)·x

=
∫

d3k

(2π)3 PL(k)|W(k)|2

= 1
2π2

∫
d lnk k3PL(k)|W(k)|2. (12.4)

The result is shown in Fig. 12.1: when smoothed on a large scale, density fluctuations are
small, while they become large when we filter on a smaller scale. For a sufficiently small
filter scale, σ 2

W becomes greater than 1. This means that, when we look at our universe
on a sufficiently small scale, i.e. with sufficiently high resolution, any given point is likely
to have a density that is very different from the cosmic mean. That means that our linear
treatment based on Eq. (12.1) predicts a wrong result for the density field in most places.

2
We choose to work with " in the following, as the perturbation to the time-time component of the metric is

what physically governs the motion of non-relativistic matter. When comparing to the literature, keep in mind
that different notation (e.g., ! instead of ") and different sign conventions are common.
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FIGURE 3.2 Phase space for a set of collisionless particles in a harmonic potential. The initial distribution at t1 moves
in phase space to reach a different position at time t2. The phase-space volume occupied by the particles is conserved
throughout the evolution. In case of the harmonic potential, even the shape of the phase-space volume remains the
same, while in general it gets distorted in the course of time evolution.

here the physics will be quite transparent. It will be useful to keep this example in mind
when the algebra threatens to obscure the physics in the following chapters.

Consider free particles living in a one-dimensional harmonic potential well. Their en-
ergy then is simply

E = p2

2m
+ 1

2
kx2, (3.21)

where k is the spring constant. The distribution function is now a function of three scalar
arguments f = f (x,p, t). Fig. 3.2 illustrates the movement through phase space of a distri-
bution of such particles (throughout, we consider the collisionless case C[f ] = 0). The full
time derivative df/dt vanishes since the number of particles in the bunch at t1 equals that
at t2. What changes over time is the location of the particles in phase space themselves.
Alternatively, we can think of x and p as independent variables (not dependent on t) and
take partial derivatives of f with respect to t , x, and p. All of these partial derivatives are
nonzero, but the appropriate weighted sum of the three vanishes [Eq. (3.17)].

To determine the coefficients ẋ and ṗ in Eq. (3.17), we must use the equations of motion,
i.e. the one-dimensional version of Eq. (3.16). Via Newton’s force law, we have

ẋ = p

m
and ṗ = −kx. (3.22)

When generalizing to the relativistic case, these familiar equations will be replaced by the
geodesic equation we have derived in Sect. 2.1.2. The collisionless Boltzmann equation for
the present case is then

∂f

∂t
+ p

m

∂f

∂x
− kx

∂f

∂p
= 0. (3.23)

The Boltzmann equation for 
cold, collision less matter

• Fundamental quantity: 
distribution function 

• Boltzmann equation 
describes its evolution

• Dark matter: no 
interactions! Baryons: 
neglect interactions…

• Then, can lump dark 
matter and baryons 
together

<latexit sha1_base64="zo3olykfPFBOWnmzPyIYWF5jevw="></latexit>

fm(x,p, t)



The Boltzmann equation for 
cold, collision less matter

• Fundamental quantity: 
distribution function 

• Boltzmann equation 
describes its evolution

• Dark matter: no 
interactions! Baryons: 
neglect interactions…

• Then, can lump dark 
matter and baryons 
together

Chapter 12 • Growth of structure: beyond linear theory 329

linear-order Einstein equations we have derived in Ch. 6 are sufficient. Second, since non-
linear evolution is relevant only on small scales (compared to the Hubble radius), we can
employ the Newtonian limit of the relevant Einstein equation, i.e. Eq. (12.5). This greatly
simplifies the gravity side of the problem, and we can devote our attention to the dynamics
of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
all scales in matter domination if δm is the density perturbation in synchronous-comoving
gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
equation. So we need an expression for the Boltzmann equation that is not restricted to
small perturbations, but applies to non-relativistic matter on sub-horizon scales. We begin
with the general collisionless Boltzmann equation written in Cartesian form:

dfm

dt
= ∂fm

∂t
+ ∂fm

∂xi

dxi

dt
+ ∂fm

∂pi

dpi

dt
= 0, (12.6)

where fm is the distribution function for matter. Now, using the fact that matter is moving
slowly, we expand E(p) = m + p2/2m and keep only the leading terms in p/m. This yields
dxi/dt = pi/am from the geodesic equation. The term dpi/dt is also straightforward, start-
ing from Eq. (3.69):

dpi

dt
= −

(
H + #̇

)
pi − E

a
$,i − 1

a

pi

E
pk#,k + p2

aE
#,i

→ −Hpi − m

a
$,i (non-relativistic, sub-horizon). (12.7)

All other terms are either suppressed on small scales (#̇) or negligible due to the small
velocities (terms of order p2/E). Inserting these results into the Boltzmann equation, we
obtain

dfm

dt
= ∂fm

∂t
+ ∂fm

∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m

a

∂$

∂xj

]
= 0. (12.8)

Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the #̇ term, which is at most of order aH$, and hence much smaller
than the ∂$/∂xj contribution, which is of order k$.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
evolution of matter. It is known as the Vlasov–Poisson system. A nonlinear system (through
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of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
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gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
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Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the #̇ term, which is at most of order aH$, and hence much smaller
than the ∂$/∂xj contribution, which is of order k$.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
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linear-order Einstein equations we have derived in Ch. 6 are sufficient. Second, since non-
linear evolution is relevant only on small scales (compared to the Hubble radius), we can
employ the Newtonian limit of the relevant Einstein equation, i.e. Eq. (12.5). This greatly
simplifies the gravity side of the problem, and we can devote our attention to the dynamics
of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
all scales in matter domination if δm is the density perturbation in synchronous-comoving
gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
equation. So we need an expression for the Boltzmann equation that is not restricted to
small perturbations, but applies to non-relativistic matter on sub-horizon scales. We begin
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where fm is the distribution function for matter. Now, using the fact that matter is moving
slowly, we expand E(p) = m + p2/2m and keep only the leading terms in p/m. This yields
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All other terms are either suppressed on small scales (#̇) or negligible due to the small
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Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the #̇ term, which is at most of order aH$, and hence much smaller
than the ∂$/∂xj contribution, which is of order k$.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
evolution of matter. It is known as the Vlasov–Poisson system. A nonlinear system (through
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)

Supplemented with the Poisson equation 
for the gravitational potential:

00-component of Einstein eq. in the subhorizon limit
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linear-order Einstein equations we have derived in Ch. 6 are sufficient. Second, since non-
linear evolution is relevant only on small scales (compared to the Hubble radius), we can
employ the Newtonian limit of the relevant Einstein equation, i.e. Eq. (12.5). This greatly
simplifies the gravity side of the problem, and we can devote our attention to the dynamics
of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
all scales in matter domination if δm is the density perturbation in synchronous-comoving
gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
equation. So we need an expression for the Boltzmann equation that is not restricted to
small perturbations, but applies to non-relativistic matter on sub-horizon scales. We begin
with the general collisionless Boltzmann equation written in Cartesian form:
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= ∂fm
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+ ∂fm

∂xi

dxi

dt
+ ∂fm

∂pi

dpi

dt
= 0, (12.6)

where fm is the distribution function for matter. Now, using the fact that matter is moving
slowly, we expand E(p) = m + p2/2m and keep only the leading terms in p/m. This yields
dxi/dt = pi/am from the geodesic equation. The term dpi/dt is also straightforward, start-
ing from Eq. (3.69):
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All other terms are either suppressed on small scales (#̇) or negligible due to the small
velocities (terms of order p2/E). Inserting these results into the Boltzmann equation, we
obtain

dfm

dt
= ∂fm

∂t
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∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m
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∂$

∂xj

]
= 0. (12.8)

Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the #̇ term, which is at most of order aH$, and hence much smaller
than the ∂$/∂xj contribution, which is of order k$.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
evolution of matter. It is known as the Vlasov–Poisson system. A nonlinear system (through
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Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields
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where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
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linear-order Einstein equations we have derived in Ch. 6 are sufficient. Second, since non-
linear evolution is relevant only on small scales (compared to the Hubble radius), we can
employ the Newtonian limit of the relevant Einstein equation, i.e. Eq. (12.5). This greatly
simplifies the gravity side of the problem, and we can devote our attention to the dynamics
of matter. The latter approximation is better than it seems: Eq. (12.5) retains its validity on
all scales in matter domination if δm is the density perturbation in synchronous-comoving
gauge. The latter coordinates are defined by g00 = −1 (i.e. no time-time perturbation, so
that the time coordinate is the proper time: synchronous; see Exercise 5.1), and no ve-
locities um = 0 (comoving). As long as we keep this interpretation of δm in mind in the
following, the results of perturbation theory and simulations that we will obtain are valid
on all scales, including those comparable to the horizon.

We now want to extend Eq. (12.1) to nonlinear order. To do this, let us go back to the
starting point of these equations, which we obtained by taking moments of the Boltzmann
equation. So we need an expression for the Boltzmann equation that is not restricted to
small perturbations, but applies to non-relativistic matter on sub-horizon scales. We begin
with the general collisionless Boltzmann equation written in Cartesian form:
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where fm is the distribution function for matter. Now, using the fact that matter is moving
slowly, we expand E(p) = m + p2/2m and keep only the leading terms in p/m. This yields
dxi/dt = pi/am from the geodesic equation. The term dpi/dt is also straightforward, start-
ing from Eq. (3.69):
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All other terms are either suppressed on small scales (#̇) or negligible due to the small
velocities (terms of order p2/E). Inserting these results into the Boltzmann equation, we
obtain
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Let us recap the significance of this result: Eq. (12.8) does not assume that the distribution
function is close to its value in the homogeneous universe. It does assume small spacetime
perturbations, which we have found to be an excellent approximation on all scales. The
same reasoning that simplified the 00-component of the Einstein equation to Eq. (12.5)
allowed us to drop the #̇ term, which is at most of order aH$, and hence much smaller
than the ∂$/∂xj contribution, which is of order k$.

The coupled set of Eq. (12.8) and Eq. (12.5) forms the starting point for the nonlinear
evolution of matter. It is known as the Vlasov–Poisson system. A nonlinear system (through
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the coupling between ! and fm) of integro-differential equations (because δm is an integral
over the distribution function fm) in 6 + 1 dimensions, it is notoriously difficult to solve.
The following sections will deal with perturbative as well as numerical techniques to solve
it.

The perturbative approach proceeds as we have done in previous chapters: by taking
moments of the Boltzmann equation. In the linear regime that we studied so far, the dis-
tribution function fm was completely described by its zeroth (density) and first moments
(velocity). Physically, this means that the second moment, the velocity dispersion, is van-
ishingly small. Then the distribution function can be written as

fm(x,p, t) = ρm(x, t)

m
(2π)3δ

(3)
D (p − mum(x, t)) (no velocity dispersion), (12.9)

where we have absorbed the irrelevant degeneracy factors of CDM and baryon species into
fm. You can think of this as arising from a thermal velocity distribution at each point cen-
tered around um(x, t) when taking the limit of zero temperature. It is important to realize,
however, that the form of the distribution function Eq. (12.9) does not remain valid once
structure becomes nonlinear. We will study in more detail how this happens in Sect. 12.3.
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Initial conditions: cold

<=> no velocity dispersion
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Boltzmann equation

• Boltzmann equation: 6+1dim; plus we 
need to integrate fm to obtain δ for Ψ

• Extremely difficult to solve. Let’s try 
different approach: taking moments

• That means we integrate the equation 
(multiplied by p, p2) over d3p
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Homework:  take the moments of the Boltzmann equation to derive the fluid equations. Use:
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derivatives with respect to t and x outside the momentum integral, to obtain

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
−

∫
d3p

(2π)3 m

[
Hpj + m

a

∂$

∂xj

]
∂

∂pj
fm(x,p, t) = 0,

(12.13)

where we have used that
〈
pj

〉
fm

= ρmu
j
m. The last term can be integrated by parts to move

the derivative with respect to pj from fm to the term in square brackets (the boundary
term vanishes, since any well-behaved distribution function does not have particles at in-
finite momentum). Evaluating this derivative, we obtain, first, −∂/∂pj (Hpj ) = −3H , while
∂/∂pj (∂$/∂xj ) = 0, since the potential $ is only a function of t and x. Thus, Eq. (12.13)
becomes

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
+ 3Hρm(x, t) = 0. (12.14)

Modulo an overall factor m, this is the continuity equation whose linear version is
Eq. (5.41), but now valid at fully nonlinear order (and on sub-horizon scales).

As in the linear case, Eq. (12.14) is not sufficient, since we need an equation for the
velocity ui

m as well. Let us thus take the first moment of the Vlasov equation (12.8), by
multiplying with pi and integrating over p:
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(12.15)

The last term can again be dealt with by integration by parts, and we obtain
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+ 4Hρmui
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ρm(x, t)

∂$(x, t)

∂xi
= 0. (12.16)

This is our desired equation for ui
m, but we now encounter another quantity, the second

moment of the distribution
〈
pipj

〉
fm

. Let us write this as follows, introducing the stress ten-

sor σ
ij
m(x, t):

1
m

〈
pipj

〉

fm
= ρmui

mu
j
m + σ

ij
m . (12.17)

As with ui
m and pi , we do not need to distinguish between upper and lower latin indices on

σ
ij
m. At this point, this is nothing but a definition for σ

ij
m, but we will learn the significance

of this decomposition in a moment. Inserting this into Eq. (12.16), we obtain
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(12.18)

Eq (12.17)



Result: the fluid equations 
(Euler-Poisson system)

• Much nicer: 3+1dim; no integrals involved

• How did this magic happen? Neglected higher 
moments, in particular a contribution to Euler 
equation from velocity dispersion (anisotropic 
stress)

• Fine on large scales, as we will see.
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)

<latexit sha1_base64="9wGVIvTRNItQD6oCvxCFgNA2U9w="></latexit>

@j(⇢m�
ij
m)

Eq (12.23)

Primes denote derivative w.r.t conformal time



Result: the fluid equations 
(Euler-Poisson system)

• Now, take divergence of Euler equation, 
and separate linear and nonlinear terms 

• Curl component decays if not sourced 
(Homework)
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Linearizing the fluid 
equations

• If all of δ,θ, Ψ are small, we can neglect the 
nonlinear terms on the right-hand side:
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Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)
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• Then, we can combine all three equations 
into a single, second-order ODE for the 
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• Then, we can combine all three equations 
into a single, second-order ODE for the 
density δ:

Linear velocity divergence:

Set as initial condition at early times
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)
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FIGURE 8.15 The growth factor divided by the scale factor in three different Euclidean cosmologies. The solid line
shows the fiducial cosmology. Increasing the amount of dark energy, or increasing its equation of state above −1,
leads to a greater suppression of the growth at late times.

The proportionality constant is fixed by the definition of Eq. (8.3), which says that, early
on when matter still dominates (say at z " 10), D+ should be equal to a. At those times,
H = H0!

1/2
m a−3/2, so the growth factor is

D+(a) = 5!m

2
H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3 (", curvature) . (8.77)

If dark energy is not a cosmological constant, then Eq. (8.77) is not a solution to the
second-order growth equation, which needs to be solved directly. However, for the growth
rate f , the logarithmic derivative of the growth factor, there exists an empirical fitting for-
mula that is remarkably precise even in the presence of dynamical dark energy:

f (a) ≡ d lnD+(a)

d lna
" [!m(a)]0.55 , (8.78)

where !m(a) ≡ 8πGρm(a)/3H 2(a) is the time-dependent matter density parameter (which
reduces to our constant !m if a = 1). We will use this time-dependent !m(a) only here and
in Ch. 12.

Fig. 8.15 shows the growth factor for three different Euclidean cosmologies, divided by
a in order to better show the trends at late times. As mentioned above, if the universe is
Euclidean and matter dominated, the growth factor is simply equal to the scale factor. In
the presence of dark energy, growth is suppressed by varying amounts depending on the
amount and equation of state of dark energy. We will see some observable implications of
this in Ch. 11.

• Growth is probe of 
dark energy



Linear growth

• Together with initial 
conditions (transfer 
function), we can 
compute matter 
power spectrum
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25
As

#2
m

D2
+(a)T 2(k)

kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at

h�(k)�⇤(k0)i = (2⇡)3�D(k � k0)P (k)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>


