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Motivation

® The large-scale structure (LSS) is

historically one of the key probes of
cosmology

Peebles; Efstathiou+ 90 predicted a positive cosmological
constant A from LSS observations

® Now, we are really in a golden age of LSS

with plenty of experiments under way:
eBOSS, DES, DESI, PFS, SphereX, Euclid,
WFIRST, ...



Motivation

® Using large-scale structure, we can learn about

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
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Motivation

® |nflation: reconstruct the properties of the initial
conditions, and look for gravitational waves

® Dark Energy and Gravity: the growth of
structure depends sensitively on the expansion
history of the Universe, and the nature of
gravity
Growth equation: [)"’/ + aHD' = 4r G,ED

® Darlk Matter: how “cold” is cold dark matter ?
What is the sum of neutrino masses !



Challenge: unlike the CMB,
every data point is nonlinear!
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Preliminaries

® |n bulk of lectures, we’ll be assuming “vanilla”
Euclidean (flat) ACDM cosmology

® (Gaussian, adiabatic, almost scale-invariant initial
perturbations

® Dark Energy equation of state w=-1, although
results hold for general smooth DE as well

® Mostly neglect effect of massive neutrinos

® We will (hopefully) discuss the effect of going beyond
these assumptions in the 5th lecture



Preliminaries

Gravity <-> Matter
(Einstein eq.) Boltzmann equations
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Preliminaries

Baryons and CDM are “cold”: the constituent
particles are non-relativistic

Most of structure formation happens well
within the Hubble horizon: sub horizon
approximation

These two facts simplify equations substantially!

Can often use our intuition for Newtonian
gravity



Preliminaries

Will not study early universe
evolution here

Evolution of modes of different

wavelengths at early times (k=2T17A)

Early evolution starts when 10°
perturbation “enters the horizon” "

Evolution depends on whether =
this happens in radiation =
domination (slower growth) or

matter domination (faster 0

' :
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growth) Cold dark matter component only

Small-scale modes enter horizon
earlier



Notation

ds? = —(1 4 2W(x, t))dt + a2(t)(1 + 2®(x, t))da’

® Comoving coordinates:
® Conformal time:
Primes denote derivative w.r.t conformal time
® Comoving distance:
® Particle velocity/momentum:

® Fluid velocity; divergence:

® Gravitational potential:

dr = a(t)dx
dt da dIna
dn=— = = .
a(t) a*H(a) aH(a)
dz
T
dax ,
V="—"=0g— ==
m dt
Uu, 0 = (?Zuz
\




Cold Dark Matter
cosmology in a nutshell

Large-scale fluctuations are
small (still linear today)

Structure forms hierarchically
from small to large scales

Perturbative expansion in
fluctuations on large scales

Simulations of large volumes
can assume background
cosmology

Millennium simulation / MPA
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How do we compare
theory with data?

® Assume we observe the matter density
ﬁeld ,0(213‘) — ,5[1 -+ 5(,’13)] O: fractional matter density perturbation

® Given cosmological parameters 0, theory
predicts

|. Statistics of initial conditions (Gaussian)

2. How a given din () evolves into the final
density field O

® |nh cosmology, we are always dealing with
statistical fields!



Characterizing
Statistical Field

Consider 0(x), and its Fourier-space version O(k)

Simplest statistical field: the field values at each point are
independent Gaussian random variables (with vanishing mean)

In cosmology, we often encounter these simplest fields -
where we have independent Fourier modes

Statistics of field is completely described in terms of the
variance of the Fourier modes, as a function of k: the power
spectrum

(9(k)o™ (k")) = (27)°0p(k — k') P(k)



Characterizing
Statistical Field

® So let’s characterize large-scale matter
density field

® Consider variance of matter density field
filtered on different scales:
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Characterizing
Statistical Field

® So let’s characterize large-scale matter
density field

® Consider variance of matter density field
filtered on different scales:
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How do we compare
theory with data?

® (Goal: compute power
spectrum of matter and

Galaxy Power spectrum measured in BOSS

galaxies CMASS (2,4-057)
10° - » | | Mlonopolé =
® And also other statistics of =8 Quadiupole
LSS Z; 10* F
10° |
0.01 01.1 0j2

k [h/Mpc]

(6(k)6* (k") = (2m)?0p(k — k') P(k) Gil-Marin et al, 2016



The Boltzmann equation for
cold, collision less matter

Fundamental quantity:
distribution function fum(x, p,t)

Boltzmann equation 1.00 =
describes its evolution 0-75;

0.50}
Dark matter: no 025
interactions! Baryons: . g
neglect interactions... 05| e
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Then, can lump dark
matter and baryons _
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The Boltzmann equation for
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The Boltzmann equation for
cold, collision less matter

Fundamental quantity: dfm  fm  0fmdx’  3fmdp’ .
distribution function dt ~— ot @ oxi dtr ' apt dr
Boltzmann equation Geodesic equations: just

. . . Newtonian plus factors of a
describes its evolution | |

dx?, B p’L
Dark matter: no dt ~— am
interactions! Baryons: 6211 T BLP
a

neglect interactions...

Supplemented with the Poisson equation

Then, can |ump dark for the gravitational potential:
matter and baryons

3
together 3 emm@t

00-component of Einstein eq. in the subhorizon limit



The Boltzmann equation for
cold, collision less matter

Fundamental quantity:
distribution function

Boltzmann equation
describes its evolution

Dark matter: no
interactions! Baryons:
neglect interactions...

Then, can lump dark
matter and baryons
together

dfm af_m_l_afmpj_af_mH‘ m oW
dt 0t 0x/ ma  dp/ |

3
VY = EQm(n)(aH)zém.

These equations will govern almost everything in
these lectures!



The Boltzmann equation for
cold, collision less matter

Fundamental quantity:
distribution function

Boltzmann equation

describes its evolution
dfm

dfm | 9fm Pj dfm . m oW
=~ |Hp +—— | =
Dark matter: no dt ~ 9t  dxJma 9pJ a dx/
interactions! Baryons:
neglect interactions... Initial conditions: cold
Then, can lump dark it p.) = PR (p— mum(r) 6 (129)
matter and baryons <=> no velocity dispersion

together



Taking moments of the
Boltzmann equation

® Boltzmann equation: 6+ dim; plus we
need to integrate fm, to obtain O for W

® Extremely difficult to solve. Let’s try
different approach: taking moments

® That means we integrate the equation
(multiplied by p, p2) over d3p



Taking moments of the
Boltzmann equation

® Define: ) e = | (ji’;A(x,p,r)fm(x,p,r)
® /eroth moment yields om (X, 1)
o (1) g (6, 8) =n(x,1) =
density: m
i
® First moment yields bulk W (x. 1) = P >fm
velocity: e (m) ¢

Homework: take the moments of the Boltzmann equation to derive the fluid equations. Use:
1

%<pipj>f :pmuinu{n—l—()‘rg. Eq (12.17)



Result: the fluid equations
(Euler-Poisson system)

), 0 j
om + Py [(1 T 5m)um] =0,
. S B : A
u ' +ul,—ut +aHu' + — =0, Eq (12.23)
m ox/ ™ m o Axt

V2 = 20 (n)(aH)*$
=5 m(n)(aH ) om.

Primes denote derivative w.r.t conformal time

® Much nicer: 3+1dim; no integrals involved

® How did this magic happen?! Neglected higher
moments, in particular a contribution to Euler
equation from velocity dispersion (anisotropic

stress) 9. (pmo’?)

® Fine on large scales, as we will see.



Result: the fluid equations
(Euler-Poisson system)

® Now, take divergence of Euler equation,
and separate linear and nonlinear terms

® Curl component decays if not sourced
(Homework)
j

Sm/ +60m = —0mbUm — Um —0m,
dx/

.9 : .
O’ + aHbOm + V2 = —u{nﬁﬂn — Bud)(@;ul)

vzqf—ész( H)*$
=5 m(n)(aH ) om.



Linearizing the fluid
equations

o [f all of 0,0, W are small, we can neglect the
nonlinear terms on the right-hand side:

V2 = 20 (n)(aH)*8
=5 m(n)(aH)"0m.



Linearizing the fluid
equations

® Then, we can combine all three equations

into a single, second-order ODE for the
density O:

Primes denote derivative w.r.t conformal time

The density at all points in (real or Fourier) space evolves independently!



Linearizing the fluid
equations

® Then, we can combine all three equations
into a single, second-order ODE for the
density O:

5 (x,m) = D(n)do(x)
D" 4 aHD' — gamm)(aH)QD(n)

)= Lo

The density at all points in (real or Fourier) space evolves independently!




Linearizing the fluid
equations

® Then, we can combine all three equations
into a single, second-order ODE for the
density O:

/ Set as initial condition at early times

5 (x,n) = D(n)do(x)
D" +aHD' = ng(n)(aH )*D(n)

)= Lo

The density at all points in (real or Fourier) space evolves independently!




Linearizing the fluid
equations

® Then, we can combine all three equations
into a single, second-order ODE for the
density O:

/ Set as initial condition at early times

6" (@, 1) = D(n)do(x)

D" L+ aHD' = ng(n)(aH)QD(n)

)= Lo

Linear velocity divergence: oW, n) =—-8W'(x,n)=—aHfm)sV(x,n). f=dnD/dIna



Linear growth

® Growth is probe of
dark energy

1 +z2
100 10
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0.9F
3
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ol Qp = 0.69, w = —1
e QW =0.72,w = —1
0.7 —.—Qy = 0.69,w = —0.5
............. Q=0
L |
0.01 0.1
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Linear growth

® Jogether with initial
conditions (transfer =
function), we can
compute matter
power spectrum = 10

1045—

’

(9(k)o™ (k")) = (27m)°0p(k — k') P(k)



