Structure Formation Lecture 2

Fabian Schmidt MPA

All figures taken from Modern Cosmology, Second Edition, unless otherwise noted

MODERN COSMOLOGY

Outline of lectures

I. The problem: collisionless Boltzmann equation and fluid approximation
I. Linear evolution
2. Nonlinear evolution of matter
I. Perturbation theory <- HERE
2. Simulations
3. Phenomenology of nonlinear matter distribution
3. Formation and distribution of galaxies
I. Galaxy formation in a nutshell
2. Spherical collapse model
3. Physical clustering of halos and galaxies; bias
4. Observed clustering of galaxies
4. Beyond Λ CDM

Notation

$$
d s^{2}=-(1+2 \Psi(\boldsymbol{x}, t)) d t^{2}+a^{2}(t)(1+2 \Phi(\boldsymbol{x}, t)) d \boldsymbol{x}^{2}
$$

- Comoving coordinates:

$$
d \boldsymbol{r}=a(t) d \boldsymbol{x}
$$

- Conformal time:

$$
d \eta=\frac{d t}{a(t)}=\frac{d a}{a^{2} H(a)}=\frac{d \ln a}{a H(a)} .
$$

- Comoving distance:

$$
d \chi=-d \eta=\frac{d z}{H(z)}
$$

- Particle velocity/momentum: $\boldsymbol{v}=\frac{\boldsymbol{p}}{m}=a \frac{d \boldsymbol{x}}{d t}=\boldsymbol{x}^{\prime}$
- Fluid velocity; divergence:

$$
\boldsymbol{u} ; \quad \theta=\partial_{i} u^{i}
$$

- Gravitational potential:

Recap

- In Lecture I, we derived the collisionless Boltzmann equation for DM and baryons
- Combined with Poisson equation for gravitational potential, these govern all of cosmological structure formation at late times
- We then took moments to obtain the fluid equations (continuity \& Euler), and dropped the curl velocity
- Result:

$$
\delta_{\mathrm{m}}{ }^{\prime}+\theta_{\mathrm{m}}=-\delta_{\mathrm{m}} \theta_{\mathrm{m}}-u_{\mathrm{m}}^{j} \frac{\partial}{\partial x^{j}} \delta_{\mathrm{m}},
$$

$$
\theta_{\mathrm{m}}^{\prime}+a H \theta_{\mathrm{m}}+\nabla^{2} \Psi=-u_{\mathrm{m}}^{j} \frac{\partial}{\partial x^{j}} \theta_{\mathrm{m}}-\left(\partial_{i} u_{\mathrm{m}}^{j}\right)\left(\partial_{j} u_{\mathrm{m}}^{i}\right)
$$

$$
\nabla^{2} \Psi=\frac{3}{2} \Omega_{\mathrm{m}}(\eta)(a H)^{2} \delta_{\mathrm{m}} .
$$

Recap

- We then derived the linear approximation, when all of δ, θ, Ψ are small:

$$
\begin{aligned}
\delta^{(1)}(\boldsymbol{x}, \eta) & =D(\eta) \delta_{0}(\boldsymbol{x}) \\
D^{\prime \prime}+a H D^{\prime} & =\frac{3}{2} \Omega_{\mathrm{m}}(\eta)(a H)^{2} D(\eta) \\
\Omega_{\mathrm{m}}(\eta) & =\frac{\rho_{\mathrm{m}}(\eta)}{\rho_{\mathrm{cr}}(\eta)} \quad \begin{array}{l}
\text { Time-dependent density parameter; } \\
=0.3 \text { today, }=\text { I in the past }
\end{array}
\end{aligned}
$$

Going beyond linear theory

- We looked at the variance of matter density field filtered on different scales:
- Shape is consequence of initial conditions from inflation
- Clearly, to describe universe
 on scales smaller than hundreds of Mpc, we need to go beyond linear theory!

Going beyond linear theory

- Let's go back to full fluid equations
- They contain nonlinear terms, specifically quadratic terms, moved here to the r.h.s.:

$$
\begin{gathered}
\delta_{\mathrm{m}}^{\prime}+\theta_{\mathrm{m}}=-\delta_{\mathrm{m}} \theta_{\mathrm{m}}-u_{\mathrm{m}}^{j} \frac{\partial}{\partial x^{j}} \delta_{\mathrm{m}} \\
\theta_{\mathrm{m}}^{\prime}+a H \theta_{\mathrm{m}}+\nabla^{2} \Psi=-u_{\mathrm{m}}^{j} \frac{\partial}{\partial x^{j}} \theta_{\mathrm{m}}-\left(\partial_{i} u_{\mathrm{m}}^{j}\right)\left(\partial_{j} u_{\mathrm{m}}^{i}\right) \\
\nabla^{2} \Psi=\frac{3}{2} \Omega_{\mathrm{m}}(\eta)(a H)^{2} \delta_{\mathrm{m}} . \quad \text { is just linear! }
\end{gathered}
$$

Going beyond linear theory

- That structure suggests iterative approach: plug in linear solution to nonlinear source terms, and solve for second order:

$$
\begin{aligned}
\delta^{(2) \prime}+\theta^{(2)} & =-\delta^{(1)} \theta^{(1)}-\left(u^{(1)}\right)^{j} \frac{\partial}{\partial x^{j}} \delta^{(1)}, \\
\theta^{(2) \prime}+a H \theta^{(2)}+\frac{3}{2} \Omega_{\mathrm{m}}(\eta)(a H)^{2} \delta^{(2)} & =-\left(u^{(1)}\right)^{j} \frac{\partial}{\partial x^{j}} \theta^{(1)}-\left[\partial_{i}\left(u^{(1)}\right)^{j}\right]\left[\partial_{j}\left(u^{(1)}\right)^{i}\right],
\end{aligned}
$$

where we have used the Poisson equation for $\nabla^{2} \Psi^{(2)}$

Perturbation theory

- Idea: expand all fields according to:

$$
\begin{aligned}
\delta_{\mathrm{m}}(\boldsymbol{x}, \eta) & =\delta^{(1)}(\boldsymbol{x}, \eta)+\delta^{(2)}(\boldsymbol{x}, \eta)+\cdots+\delta^{(n)}(\boldsymbol{x}, \eta) \\
\theta_{\mathrm{m}}(\boldsymbol{x}, \eta) & =\theta^{(1)}(\boldsymbol{x}, \eta)+\theta^{(2)}(\boldsymbol{x}, \eta)+\cdots+\theta^{(n)}(\boldsymbol{x}, \eta)
\end{aligned}
$$

- Each order collects all terms that have the same number of linear fields $\delta^{(1),} \theta^{(1)}$
- This approach is expected to work as long as each successive term in the series is smaller than the previous one
- Of course, in practice we always stop at some n

Second order

- So let's proceed with solving at second order:

$$
\begin{aligned}
\delta^{(2) \prime}+\theta^{(2)} & =-\delta^{(1)} \theta^{(1)}-\left(u^{(1)}\right)^{j} \frac{\partial}{\partial x^{j}} \delta^{(1)}, \\
\theta^{(2) \prime}+a H \theta^{(2)}+\frac{3}{2} \Omega_{\mathrm{m}}(\eta)(a H)^{2} \delta^{(2)} & =-\left(u^{(1)}\right)^{j} \frac{\partial}{\partial x^{j}} \theta^{(1)}-\left[\partial_{i}\left(u^{(1)}\right)^{j}\right]\left[\partial_{j}\left(u^{(1)}\right)^{i}\right],
\end{aligned}
$$

- R.h.s. involves derivatives and velocity u: more easily solved in Fourier space
- The linear velocity is given by

$$
\left(u^{(1)}\right)^{i}(\boldsymbol{k}, \eta)=\frac{i k^{i}}{k^{2}} a H f \delta^{(1)}(\boldsymbol{k}, \eta) \quad f \equiv d \ln D / d \ln a
$$

Second order

- Fourier transform, and pull out time dependence of source term (important that we can do that!)

$$
\begin{aligned}
\delta^{(2) \prime}(\boldsymbol{k}, \eta)+\theta^{(2)}(\boldsymbol{k}, \eta) & =a H f D^{2}(\eta) S_{\delta}(\boldsymbol{k}) \\
\theta^{(2) \prime}(\boldsymbol{k}, \eta)+\frac{3}{2} \Omega_{m}(\eta)(a H)^{2} \delta^{(2)}(\boldsymbol{k}, \eta) & =(a H f)^{2} D^{2}(\eta) S_{\theta}(\boldsymbol{k})
\end{aligned}
$$

Second order

- Fourier transform, and pull out time dependence of source term (important that we can do that!)

$$
\begin{aligned}
\delta^{(2) \prime}(\boldsymbol{k}, \eta)+\theta^{(2)}(\boldsymbol{k}, \eta) & =a H f D^{2}(\eta) S_{\delta}(\boldsymbol{k}) \\
\theta^{(2) \prime}(\boldsymbol{k}, \eta)+\frac{3}{2} \Omega_{m}(\eta)(a H)^{2} \delta^{(2)}(\boldsymbol{k}, \eta) & =(a H f)^{2} D^{2}(\eta) S_{\theta}(\boldsymbol{k}) \\
S_{\delta}(\boldsymbol{k}) & =\int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right)
\end{aligned}
$$

where we used
$\delta^{(1)}(\boldsymbol{k}, \eta)=D(\eta) \delta_{0}(\boldsymbol{k})$

$$
\times\left[1+\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{k_{1}^{2}}\right] \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right)
$$

$$
\begin{aligned}
S_{\theta}(\boldsymbol{k})=-\int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int & \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \\
& \times\left[\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{k_{1}^{2}}+\frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\right)^{2}}{k_{1}^{2} k_{2}^{2}}\right] \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right)
\end{aligned}
$$

Second order

- So we can separate the time- and \mathbf{k} dependent parts even at second order!

$$
\begin{aligned}
\delta^{(2) \prime}(\boldsymbol{k}, \eta)+\theta^{(2)}(\boldsymbol{k}, \eta) & =a H f D^{2}(\eta) S_{\delta}(\boldsymbol{k}) \\
\theta^{(2) \prime}(\boldsymbol{k}, \eta)+\frac{3}{2} \Omega_{m}(\eta)(a H)^{2} \delta^{(2)}(\boldsymbol{k}, \eta) & =(a H f)^{2} D^{2}(\eta) S_{\theta}(\boldsymbol{k}) \\
S_{\delta}(\boldsymbol{k}) & =\int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right)
\end{aligned}
$$

where we used
$\delta^{(1)}(\boldsymbol{k}, \eta)=D(\eta) \delta_{0}(\boldsymbol{k})$

$$
\times\left[1+\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{k_{1}^{2}}\right] \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right),
$$

$$
\begin{aligned}
S_{\theta}(\boldsymbol{k})=-\int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int & \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \\
& \times\left[\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{k_{1}^{2}}+\frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\right)^{2}}{k_{1}^{2} k_{2}^{2}}\right] \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right)
\end{aligned}
$$

Second order

- Solving coupled set of sourced first-order ODE using standard techniques* yields:

$$
\begin{gathered}
\delta^{(2)}(\boldsymbol{k}, \eta)=D_{+}^{2}(\eta) \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \\
\times F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right) \\
F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)=\frac{5}{7}+\frac{2}{7} \frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\right)^{2}}{k_{1}^{2} k_{2}^{2}}+\frac{1}{2} \boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)
\end{gathered}
$$

time-independent perturbation theory kernel

- Velocity divergence θ obeys similar equation
* Assume matter domination when integrating equations; accurate to better than I\%.

Second order

- Solving coupled set of sourced first-order ODE using standard techniques* yields:
grows twice as fast as linear density

$$
\begin{gathered}
\delta^{(2)}(\boldsymbol{k}, \eta)=D_{+}^{2}(\eta) \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \\
\times F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right) \\
F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)=\frac{5}{7}+\frac{2}{7} \frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\right)^{2}}{k_{1}^{2} k_{2}^{2}}+\frac{1}{2} \boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}\left(\frac{k_{1}}{k_{2}}+\frac{k_{2}}{k_{1}}\right)
\end{gathered}
$$

time-independent perturbation theory kernel

- Velocity divergence θ obeys similar equation
* Assume matter domination when integrating equations; accurate to better than I\%.

Diagrammatic

representation

- F_{2} corresponds to interaction vertex (with 3momentum conservation) coupling two incoming δ_{0}

$$
\begin{aligned}
& \delta^{(2)}(\boldsymbol{k}, \eta)=D_{+}^{2}(\eta) \int \frac{d^{3} k_{1}}{(2 \pi)^{3}} \int \frac{d^{3} k_{2}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\boldsymbol{k}_{1}-\boldsymbol{k}_{2}\right) \\
& \times F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right),
\end{aligned}
$$

Diagrammatic

representation

- Similarly, we can go to higher orders:

$$
\begin{aligned}
\delta^{(n)}(\boldsymbol{k}, \eta)=D_{+}^{n}(\eta)\left[\prod_{i=1}^{n} \int \frac{d^{3} k_{i}}{(2 \pi)^{3}}\right] & (2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}-\sum_{i=1}^{n} \boldsymbol{k}_{i}\right) \\
& \times F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right)
\end{aligned}
$$

PT kernels F_{n} obey recursion relation.

Matter power

spectrum

- Since we don't know the initial conditions at the field level, let's compute statistics
- Power spectrum:

$$
\begin{align*}
\left\langle\delta_{\mathrm{m}}(\boldsymbol{k}, \eta) \delta_{\mathrm{m}}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle= & D_{+}^{2}(\eta)\left(\delta_{0}(\boldsymbol{k}) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle \tag{I2.42}\\
& +\left\langle\delta^{(2)}(\boldsymbol{k}, \eta) \delta^{(2)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+2\left\langle\delta^{(1)}(\boldsymbol{k}, \eta) \delta^{(3)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+\cdots .
\end{align*}
$$

- Why these terms and not others?
- Count terms that have equal numbers of δ_{0}
- Terms with odd number of δ_{0} vanish

Matter power

spectrum

- Terms with odd number of δ_{0} vanish because δ_{0} is Gaussian
(this can be generalized to include small amount of primordial non-Gaussianity)
- For terms with even number, we use Wicks' theorem:

$$
\begin{aligned}
\left\langle\delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right) \delta_{0}\left(\boldsymbol{k}_{3}\right)\right\rangle= & 0 \\
\left\langle\delta_{0}\left(\boldsymbol{k}_{1}\right) \delta_{0}\left(\boldsymbol{k}_{2}\right) \delta_{0}\left(\boldsymbol{k}_{3}\right) \delta_{0}\left(\boldsymbol{k}_{4}\right)\right\rangle= & (2 \pi)^{6} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right) P\left(\boldsymbol{k}_{1}\right) P\left(\boldsymbol{k}_{3}\right) \\
& +(2 \pi)^{6} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{3}\right) \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{4}\right) P\left(\boldsymbol{k}_{1}\right) P\left(\boldsymbol{k}_{2}\right) \\
& +(2 \pi)^{6} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{4}\right) \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) P\left(\boldsymbol{k}_{1}\right) P\left(\boldsymbol{k}_{2}\right) .
\end{aligned}
$$

leads directly to

$$
\begin{aligned}
\left\langle\delta_{\mathrm{m}}(\boldsymbol{k}, \eta) \delta_{\mathrm{m}}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle= & D_{+}^{2}(\eta)\left\langle\delta_{0}(\boldsymbol{k}) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle \\
& +\left\langle\delta^{(2)}(\boldsymbol{k}, \eta) \delta^{(2)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+2\left\langle\delta^{(1)}(\boldsymbol{k}, \eta) \delta^{(3)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+\cdots .
\end{aligned}
$$

Matter power

spectrum

- Nicely represented using diagrams:

$$
\begin{align*}
\left\langle\delta_{\mathrm{m}}(\boldsymbol{k}, \eta) \delta_{\mathrm{m}}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle= & D_{+}^{2}(\eta)\left\langle\delta_{0}(\boldsymbol{k}) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle \tag{I2.42}\\
& +\left\langle\delta^{(2)}(\boldsymbol{k}, \eta) \delta^{(2)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+2\left\langle\delta^{(1)}(\boldsymbol{k}, \eta) \delta^{(3)}\left(\boldsymbol{k}^{\prime}, \eta\right)\right\rangle+\cdots .
\end{align*}
$$

Matter power

spectrum

- Use Feynman rules, or just plug in kernels to obtain:

$$
\begin{aligned}
P(k, \eta) & =P_{\mathrm{L}}(k, \eta)+P^{\mathrm{NLO}}(k, \eta)+\cdots, \\
P^{\mathrm{NLO}}(k, \eta) & =P^{(22)}(k, \eta)+2 P^{(13)}(k, \eta),
\end{aligned}
$$

$$
\text { Eq. (I2.48) } \quad \delta^{(2)}(\boldsymbol{k}) \quad \delta^{\delta^{(2)}\left(\boldsymbol{k}^{\prime}\right)} \quad \dot{j}^{\delta^{(1)}(\boldsymbol{k})} \quad \delta^{\delta^{(3)}\left(\boldsymbol{k}^{\prime}\right)}
$$

$$
P^{(22)}(k, \eta)=2 \int \frac{d^{3} p}{(2 \pi)^{3}}\left[F_{2}(\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p})\right]^{2} P_{\mathrm{L}}(p, \eta) P_{\mathrm{L}}(|\boldsymbol{k}-\boldsymbol{p}|, \eta),
$$

$$
P^{(13)}(k, \eta)=3 P_{\mathrm{L}}(k, \eta) \int \frac{d^{3} p}{(2 \pi)^{3}} F_{3}(\boldsymbol{p},-\boldsymbol{p}, \boldsymbol{k}) P_{\mathrm{L}}(p, \eta)
$$

Matter power

spectrum

- Then let computer do the work...

$$
\begin{gathered}
P(k, \eta)=P_{\mathrm{L}}(k, \eta)+P^{\mathrm{NLO}}(k, \eta)+\cdots \text {, } \\
P^{\mathrm{NLO}}(k, \eta)=P^{(22)}(k, \eta)+2 P^{(13)}(k, \eta) \text {, }
\end{gathered}
$$

Bispectrum

- The bispectrum, or three-point function of δ_{0} vanishes, but not that of the evolved field δ_{m}, thanks to nonlinear evolution:

$$
\begin{align*}
\left\langle\delta_{\mathrm{m}}\left(\boldsymbol{k}_{1}, \eta\right) \delta_{\mathrm{m}}\left(\boldsymbol{k}_{2}, \eta\right) \delta_{\mathrm{m}}\left(\boldsymbol{k}_{3}, \eta\right)\right\rangle= & (2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) \tag{I2.5I}\\
& \times\left[2 F_{2}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right) P_{\mathrm{L}}\left(k_{1}, \eta\right) P_{\mathrm{L}}\left(k_{2}, \eta\right)+2 \text { perm. }\right]
\end{align*}
$$

At leading order; there are also "next-to-leading" (NLO) contributions - try writing down the diagram for the leading three-point function as well as the NLO one!

Beyond the fluid approximation

- So far, did well-defined perturbation theory, but of the wrong equation: collisionless matter is not a fluid
- Rather, the correct equation is the collisionless Boltzmann equation
- What is the error we are making?
- Recall that we neglected the velocity dispersion, or stress tensor σ_{m}, which adds force term to the Euler equation, $\rho_{\mathrm{m}}^{-1} \partial_{j} \sigma_{\mathrm{m}}^{i j}$

$$
\frac{1}{m}\left\langle p^{i} p^{j}\right\rangle_{f_{\mathrm{m}}}=\rho_{\mathrm{m}} u_{\mathrm{m}}^{i} u_{\mathrm{m}}^{j}+\sigma_{\mathrm{m}}^{i j}
$$

- What is the effect of the stress tensor? Can we incorporate it?

Beyond the fluid approximation

- Idea: treat stress tensor as effective quantity, and parametrize it, at the background and perturbation level:

$$
\sigma_{\mathrm{m}}^{i j}(\boldsymbol{x}, \eta)=\bar{\sigma}_{\mathrm{m}}(\eta) \delta^{i j}\left[1+c_{\sigma}(\eta) \delta_{\mathrm{m}}(\boldsymbol{x}, \eta)+\ldots\right]
$$

- We can't predict the coefficients from within the fluid picture - leave them free for now

$$
\bar{\sigma}_{\mathrm{m}}(\eta), c_{\sigma}(\eta)
$$

Beyond the fluid approximation

$$
\sigma_{\mathrm{m}}^{i j}(\boldsymbol{x}, \eta)=\bar{\sigma}_{\mathrm{m}}(\eta) \delta^{i j}\left[1+c_{\sigma}(\eta) \delta_{\mathrm{m}}(\boldsymbol{x}, \eta)+\ldots\right]
$$

- Insert into Euler equation:

$$
\left.u_{\mathrm{m}}^{i \prime}+a H u_{\mathrm{m}}^{i}+\partial^{i} \Psi+\frac{c_{\sigma} \bar{\sigma}_{\mathrm{m}}}{\bar{\rho}_{\mathrm{m}}} \partial^{i} \delta_{\mathrm{m}}=\text { (unchanged } 2 \text { nd-order terms }\right)
$$

Notice that constant, background stress has no dynamical effect.

Beyond the fluid approximation

$$
\sigma_{\mathrm{m}}^{i j}(\boldsymbol{x}, \eta)=\bar{\sigma}_{\mathrm{m}}(\eta) \delta^{i j}\left[1+c_{\sigma}(\eta) \delta_{\mathrm{m}}(\boldsymbol{x}, \eta)+\ldots\right]
$$

- Insert into Euler equation, take divergence again:

$$
\left.\theta_{\mathrm{m}}^{\prime}+a H \theta_{\mathrm{m}}+\nabla^{2} \Psi+\frac{c_{\sigma} \bar{\sigma}_{\mathrm{m}}}{\bar{\rho}_{\mathrm{m}}} \nabla^{2} \delta_{\mathrm{m}}=\text { (unchanged } 2 \text { nd-order terms }\right)
$$

Notice that constant, background stress has no dynamical effect.

Beyond the fluid approximation

$$
\sigma_{\mathrm{m}}^{i j}(\boldsymbol{x}, \eta)=\bar{\sigma}_{\mathrm{m}}(\eta) \delta^{i j}\left[1+c_{\sigma}(\eta) \delta_{\mathrm{m}}(\boldsymbol{x}, \eta)+\ldots\right]
$$

- Insert into Euler equation, take divergence again:

$$
\theta_{\mathrm{m}}^{\prime}+a H \theta_{\mathrm{m}}+\nabla^{2} \Psi+\frac{c_{\sigma} \bar{\sigma}_{\mathrm{m}}}{\bar{\rho}_{\mathrm{m}}} \nabla^{2} \delta_{\mathrm{m}}=\text { (unchanged 2nd-order terms) }
$$

Notice that constant, background stress has no dynamical effect.

- Additional contribution is suppressed on large scales: two additional derivatives, $\sim \mathrm{k}^{2}$ in Fourier space
- Hence, can take into account stress tensor at leading order by adding one term to equations, at the price of an unknown, free coefficient $\bar{\sigma}_{\mathrm{m}} c_{\sigma}$

Cold collisionless matter $=$ effective fluid

- At leading order, this is just another linear term in the equations (but with more derivatives)
- By redefining coefficient, correction to final density field can be written as (with free coefficient $\mathrm{C}_{s}{ }^{2}$)

$$
\begin{array}{r}
\delta^{(1)}(\boldsymbol{k}, \eta) \rightarrow\left[1-C_{s}^{2}(\eta) k^{2}\right] D_{+}(\eta) \delta_{0}(\boldsymbol{k}) \quad ; \quad P_{\mathrm{NLO}}(k) \rightarrow P_{\mathrm{NLO}}(k)-2 C_{s}^{2}(\eta) k^{2} P_{\mathrm{L}}(k) \\
\text { Similar size as } \mathrm{P}_{\mathrm{NLO}}(\mathrm{k})
\end{array}
$$

Cold collisionless matter $=$ effective fluid

- At leading order, this is just another linear term in the equations (but with more derivatives)
- By redefining coefficient, correction to final density field can be written as (with free coefficient $\mathrm{C}_{s}{ }^{2}$)

$$
\delta^{(1)}(\boldsymbol{k}, \eta) \rightarrow\left[1-C_{s}^{2}(\eta) k^{2}\right] D_{+}(\eta) \delta_{0}(\boldsymbol{k}) \quad ; \quad P_{\mathrm{NLO}}(k) \rightarrow P_{\mathrm{NLO}}(k)-2 C_{s}^{2}(\eta) k^{2} P_{\mathrm{L}}(k)
$$

- In fact, theoretical consistency forces us to introduce $\mathrm{C}_{s}{ }^{2}$ (\sim eff. sound horizon) as counterterm:

$$
\begin{array}{r}
P^{(13)}(k, \eta)=3 P_{\mathrm{L}}(k, \eta) \int \frac{d^{3} p}{(2 \pi)^{3}} \\
F_{3}(\boldsymbol{p},-\boldsymbol{p}, \boldsymbol{k}) P_{\mathrm{L}}(p, \eta) \\
\propto k^{2} / p^{2} \text { for } p \gg k
\end{array}
$$

Yes, P_{22} also leads to a counterterm, but that one is much smaller.

Effective Field Theory of

Structure Formation

- Idea: allow for all counterterms in effective fluid equations consistent with symmetries: general covariance; mass and momentum conservation
- Order different contribution according to their scaling with k
- Only one relevant scale: k_{NL}, where (roughly) matter density field becomes fully nonlinear:

$$
k_{\mathrm{NL}}^{-2}=\int \frac{d^{3} p}{(2 \pi)^{3}} p^{-2} P_{\mathrm{L}}(p)
$$

- For this ordering, we typically approximate $P_{L}(k) \sim k^{n}$ as power law, with $n \sim-I .5$, allowing us to compute loop integrals analytically, E.g.,

$$
\begin{aligned}
P_{\mathrm{NLO}}(k) & \sim\left(\frac{k}{k_{\mathrm{nl}}}\right)^{3+n} P_{\mathrm{L}}(k) \\
P_{C_{s}^{2}}(k) & \sim\left(\frac{k}{k_{\mathrm{nl}}}\right)^{2} P_{\mathrm{L}}(k)
\end{aligned}
$$

Non-gravitational

interactions of baryons

- So far, completely ignored non-gravitational interactions, while I argued that we are including baryons...
- Let's consider the effect of pressure then, assuming some relation $p=p(\rho)$ (barotropic fluid). Pressure term in baryon Euler equation, at leading order:

$$
\begin{aligned}
\rho_{\mathrm{b}}^{-1} \partial_{i} p\left(\rho_{\mathrm{b}}\right) & =\rho_{\mathrm{b}}^{-1} \partial_{i}\left[\frac{d p}{d \rho} \delta \rho_{\mathrm{b}}\right]=c_{s}^{2} \partial_{i} \delta_{\mathrm{b}} \\
\text { with } \quad c_{s}^{2} & =\frac{d p}{d \rho} ; \quad \delta \rho_{\mathrm{b}}=\bar{\rho}_{\mathrm{b}} \delta_{\mathrm{b}}
\end{aligned}
$$

- Precisely the same shape as effective stress contribution! As long as we are interested only in total matter, we can combine the two into a single $\mathrm{C}_{\mathrm{s}}{ }^{2}$.

Alternative: Lagrangian approach to structure formation

- So far, worked with Eulerian fields at fixed spatial position x
- Alternative: follow mass elements along their trajectory, labeling them with initial position q

Works because dark matter is cold: vanishing initial velocities

$$
\begin{aligned}
& \text { Phase-space } \\
& \text { sheet } \\
& f_{\mathrm{m}}(\boldsymbol{x}, \boldsymbol{p}, t)=\frac{\rho_{x}}{m}(2 \pi)^{3} \delta_{\mathrm{D}}^{(3)}\left(\boldsymbol{p}-m \boldsymbol{u}_{\mathrm{m}}(\boldsymbol{x}, t)\right) \\
& <=>\text { no velocity dispersion }
\end{aligned}
$$

Alternative: Lagrangian approach to structure formation

- So far, worked with Eulerian fields at fixed spatial position x
- Alternative: follow mass elements along their trajectory, labeling them with initial position q
- Time-dependent position given by

$$
\boldsymbol{x}_{\mathrm{f}}(\boldsymbol{q}, \eta)=\boldsymbol{q}+\boldsymbol{s}(\boldsymbol{q}, \eta)
$$

- Then use geodesic equations:

$$
\begin{aligned}
\frac{d x^{i}}{d t} & =\frac{p^{i}}{a m} \\
\frac{d p^{i}}{d t} & =-H p^{i}-\frac{m}{a} \partial_{i} \Psi
\end{aligned}
$$

Alternative: Lagrangian approach to structure formation

- So far, worked with Eulerian fields at fixed spatial position x
- Alternative: follow mass elements along their trajectory, labeling them with initial position q
- Time-dependent position given by

$$
\boldsymbol{x}_{\mathrm{f}(}(\boldsymbol{q}, \eta)=\boldsymbol{q}+\boldsymbol{s}(\boldsymbol{q}, \eta)
$$

- Then use geodesic equations:
$s^{\prime \prime}(\boldsymbol{q}, \eta)+a H s^{\prime}(\boldsymbol{q}, \eta)+\nabla_{x} \Psi\left(\boldsymbol{x}_{\mathrm{f}}(\boldsymbol{q}, \eta), \eta\right)=0$

Alternative: Lagrangian approach to structure formation

- At initial time, density perturbations were negligible, so a given element $d^{3} q$ corresponds to equal mass everywhere. Hence, density is given directly by Jacobian:

$$
\begin{aligned}
\bar{\rho}_{\mathrm{m}}(\eta) d^{3} \boldsymbol{q} & =\rho_{\mathrm{m}}(\boldsymbol{x}, \eta) d^{3} \boldsymbol{x} \\
\Rightarrow \frac{\rho_{\mathrm{m}}}{\bar{\rho}_{\mathrm{m}}}=1+\delta_{\mathrm{m}} & =\left|\frac{\partial \boldsymbol{q}}{\partial \boldsymbol{x}}\right|=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1}=\left|\delta_{i j}+\partial_{q, i} s_{j}(\boldsymbol{q}, \eta)\right|
\end{aligned}
$$

- Can insert δ_{m} into Poisson equation to obtain Ψ. Perturbation theory then proceeds by writing $\boldsymbol{s}=\boldsymbol{s}^{(1)}+\boldsymbol{s}^{(2)}+\ldots$ and solving equation for displacement order by order.

Alternative: Lagrangian approach to structure formation

- Note: two matter elements can end up at the same final position x !

$$
\boldsymbol{x}_{\mathrm{fl}}(\boldsymbol{q}, \eta)=\boldsymbol{q}+\boldsymbol{s}(\boldsymbol{q}, \eta)
$$

- Known as shell crossing
- Possible because (dark) matter is collisionless.
- This cannot happen in the fluid picture though.
- In this sense, Lagrangian approach is closer to the correct physics.

Phasespace view of structure formation

- Initial stages of collapse of overdense region

Phasespace view of structure formation

- Later stages of
collapse of overdense region

Structure formation beyond perturbation theory

- In order to take this phasespace evolution into account properly, need to go beyond fluid picture and perturbation theory.
- Back to collisionless Boltzmann equation!

