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QOutline of lectures

. The problem: collisionless Boltzmann equation and fluid approximation

|. Linear evolution

. Nonlinear evolution of matter

|. Perturbation theory <- HERE

2. Simulations

3. Phenomenology of nonlinear matter distribution
. Formation and distribution of galaxies

|. Galaxy formation in a nutshell

2. Spherical collapse model

3. Physical clustering of halos and galaxies; bias

4. Observed clustering of galaxies

. Beyond ACDM



Notation

ds? = —(1 4 2W(x, t))dt + a2(t)(1 + 2®(x, t))da?

® Comoving coordinates: dr = a(t)dx
. _dt _ da _ dlna
® Conformal time: dn= o= s =
. . dz
® Comoving distance: dx =—dn= =
: : D dax ,
® Particle velocity/momentum: v= = =a— ==
m dt
® Fluid velocity; divergence: u; 0 =0

® Gravitational potential: O




Recap

In Lecture |, we derived the collisionless Boltzmann
equation for DM and baryons

Combined with Poisson equation for gravitational
potential, these govern all of cosmological structure
formation at late times

We then took moments to obtain the fluid equations
(continuity & Euler), and dropped the curl velocity

. . 8
Result: s /g _ 5 o _ u{nTém,

x/

.9 : .
O’ + aHOm + VU = —u{nWQm — Bud)(@;ul)

vzxp—ész( H)*$
=5 m(n)(aH )" om.



Recap

® We then derived the linear approximation,
when all of 0,8, are small:

5(1)(%77) = D(n)do(x)

D"+ aHD' = > Q) (aH) D)

Qm (77) — Pm (77) Time-dependent density parameter;
Per (77) =0.3 today, =1 in the past

The density at all points in (real or Fourier) space evolves independently!



Going beyond linear
theory

® VWe looked at the variance of

matter density field filtered
on different scales:
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® Shape is consequence of
initial conditions from

Standard deviation oy
}—X
3

F— d, tophat

inflation S
[ —-—- ®, tophat, x10*
. . 1072 Ll ol C el \
® (Clearly, to describe universe I 109

on scales smaller than
hundreds of Mpc, we need to
go beyond linear theory!



Going beyond linear
theory

® | et’s go back to full fluid equations

® They contain nonlinear terms, specifically
quadratic terms, moved here to the r.h.s.:

0
dx/

. : .
O’ + aHOm + V2 = —u{nﬁém — (Qud)(@jul,).

3
VW = EQm(n)(aH)%m. is just linear!



Going beyond linear
theory

® That structure suggests iterative approach:
plug in linear solution to nonlinear source
terms, and solve for second order:

57 4 9@ — _5g _ (i 95
0x/

0@ L aHO® + EQm(n)(aH)25(2) _ _(u(l))J E9(1) — [; (u(l))J][aj (u(l))l],

9

where we have used the Poisson equation for Vi@



Perturbation theory

|dea: expand all fields according to:

Sm(x, ) =8V, ) +8D 0@, n)+--+8(x,n)
Om(x, ) =0V, ) +0Px,n) + -+ (x, n)

Each order collects all terms that have the same
number of linear fields o(1), B(1)

This approach is expected to work as long as each
successive term in the series is smaller than the
previous one

Of course, in practice we always stop at some n



Second order

® So let’s proceed with solving at second

order:

57 4 9@ — _sg _ (i 95
ox/ ’

3 0 . .
0 +aHO® + 2 Qum(n)(@H)*8® = =) 0" — [3; @)/ 1[9; D),

® R h.s.involves derivatives and velocity u:
more easily solved in Fourier space

® The linear velocity is given by

* 1.1

ik
(u(l)) (k,n) = k—aHf5(1)(k n) f=dlnD/dlna



Second order

® Fourier transform, and pull out time
dependence of source term (important that
we can do that!)

5P (k,m) + 6P (k,n) = aH fD*(n)Ss (k)

02 (k1) + 5 (1) ()0 (1) = (a2 D () Sy (k)



Second order

® Fourier transform, and pull out time
dependence of source term (important that
we can do that!)

5P (k,m) + 6P (k,n) = aH fD*(n)Ss (k)

02 (k1) + 5 (1) ()0 (1) = (a2 D () Sy (k)

d’k d’k
5300 = [ s [ Gy @88 (e k1 —

where we used X [1 + k1k~2k2} do(k1)dg(k2),
6 (K, n) = D(n)do(k)

1
d3k; d3 k-
2r)3 ] @r)3

X[kl-kz (ki - k2)?

S (k) = — Q2r)385) (k — k) — ko)

+ 8o(k1)dp(k2)
kT kiks }



Second order

® So we can separate the time- and K-
dependent parts even at second order!

5P (k,m) + 6P (k,n) = aH fD*(n)Ss (k)

02 (k1) + 5 (1) ()0 (1) = (a2 D () Sy (k)

d’k d’k
5300 = [ s [ Gy @88 (e k1 —

where we used X [1 + k1k~2k2} do(k1)dg(k2),
6 (K, n) = D(n)do(k)

1
d3k; d3 k-
2r)3 ] @r)3

X[kl-kz (ki - k2)?

S (k) = — Q2r)385) (k — k) — ko)

+ 8o(k1)dp(k2)
kT kiks }



Second order

® Solving coupled set of sourced first-order
ODE using standard techniques™ yields:

d3k d3k
5@ (k, n) = D2 (n) f : / > 2m)3 88 (k — ki — ko)

2n)? )] @2m)3
X Fa(ky, k2)8o(k1)do(k2),
2(k1 ko)? ki ko
Fy(ky, k) = 7 7 e §k1 - ko (k2+k_1)

time-independent perturbation theory kernel

® Velocity divergence B obeys similar equation

* Assume matter domination when integrating equations; accurate to better than 1%.



Second order

® Solving coupled set of sourced first-order
ODE using standard techniques™ yields:

grows twice as fast as linear density

d3k d3k
o e / (271)13 (271)23 2m’spk — k1 ~ ko)

X F>(ky, k2)do(k1)do(k2),

2(k1 k)? ki ko
—k k %2
7 7 k2k2 2 b k2 + k1

time-independent perturbation theory kernel

Fa(ky, ko) =

® Velocity divergence B obeys similar equation

* Assume matter domination when integrating equations; accurate to better than 1%.



Diagrammatic
representation

® [, corresponds to interaction vertex (with 3-
momentum conservation) coupling two incoming Qo

d3k d3k
s k. — D2 / 1 / 2 27)38 (k — k1 — k
(k,n) +(m) (27)3 (271)3( )70 1 2)Eq.(|2.40) 5

X Fa(ky, k2)d0(k1)do(k2), (Qi(k)

Fy(ky, k2)
x (2m)26%) (k — Ky — k)

5<1)(k1) 5(1>(k2)



Diagrammatic
representation

® Similarly, we can go to higher orders:

n d3kl' n
8" (k,n) = D'.(n) []_[/ (27)3} 2m)358) (k - Zkl)
i=1 i=1 5(")(k)

X Fp(ky, -+ ky)do(ky)---So(kp). ¢

PT kernels F, obey recursion relation.

F’n,(k17 k27 e kn)
x (2m)2 0 (k= Foy -+ — Key)

6(1>(k1) 5(1>(kn>



Matter power
spectrum

® Since we don’t know the initial conditions at
the field level, let’s compute statistics

® Power spectrum:

(S (k, ))Sm(K', ) = D3.(n) (80 (k)So (k")) Eq. (12.42)
(82U, ms? U m) + 280 e, M K )+

® Why these terms and not others!?
® Count terms that have equal numbers of Qo

® Terms with odd number of ¢ vanish



Matter power
spectrum

® Terms with odd number of ®¢ vanish because

. : (this can be generalized to include small
60 IS GGUSSIG” amount of primordial non-Gaussianity)

® For terms with even number, we use Wicks’
theorem:

(80(k1)é0(k2)é0(k3)) =0
(80 (k)80 (k)80 (k3)80(ka)) = (27)08Y) (k| + k)8 (k3 + kg) P (k1) P (k3)
+2m)08) (k) +k3)85) (ky + kg) P (k1) P (k)
+ )08 (k1 +kg)815) (ky + k3) P (k1) P (k).
leads directly to

(8m(k, mdm(K', ) = D () (8o(k)So (k"))

(6@, ms@ &', ) +2{80 e, D U ) + -



20

Matter power

spectrum

® Nicely 5
represented

using diagrams: /)\
0 (k) 6P (k) {6

(8m (k, m)dm (k', ) = D.(n) (80 (k)80 (k) o, (12.42)
(6@, ms@ &', ) +2{80 e, D U ) + -
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Matter power
spectrum

® Use Feynman rules, or just plug in kernels
to obtain:

P(kt*r]):PL(kan)_I_PNLO(kan)_l_ s
PNk, n) = PP (k, n) + 2P (k, n),

Eq.(12.48) 16k 6@ (k 45 (k)
d3
P km =2 [ S [Fatpk = ) P LK = plo)
(13) d’p
P (k, n) =3Pk, n)/ s F3(p, —p. k) PL(p, 1).
(27)
6 (k 5 (k 5(1) 5(1)

________________________________________________

PL 27‘(’ 5(3) ks + k4)

LF L=
i ;PL ()
PL(p) Py (k)



Matter power
spectrum

® Then let computer do the work...

Pk,n) =Prtk,n)+ PN O%,n)+---.
PNk, n) = PP (k, n) + 2P (k, n),

22
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Bispectrum

® The bispectrum, or three-point function of
Oo vanishes, but not that of the evolved
field Om, thanks to nonlinear evolution:

(Sm (e, mSm 2, )m ks, m) = 2m) 85 (ki + k2 + k3) Eq. (12.51)

x [2F2(k1, k) Pr(ky, m) Pu(k2, 1) + 2 perm. ]

At leading order; there are also “next-to-leading” (NLO) contributions - try
writing down the diagram for the leading three-point function as well as the NLO one!



Beyond the fluid
approximation

So far, did well-defined perturbation theory, but of the wrong
equation: collisionless matter is not a fluid

Rather, the correct equation is the collisionless Boltzmann
equation

What is the error we are making?

Recall that we neglected the velocity dispersion, or stress
tensor Om, Which adds force term to the Euler equation, p;ll(f?j(fg

1 .. . . .
— <p’pf > L= Pmlb U, + o

What is the effect of the stress tensor? Can we incorporate it?

24
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Beyond the fluid
approximation

® |dea: treat stress tensor as effective
quantity, and parametrize it, at the
background and perturbation level:

o (@,1) = Tm(7)0" [1 4 co (1)0m (2, 1) + . . ]

® We can'’t predict the coefficients
from within the fluid picture - leave them

free for now om(n), cs(n)
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Beyond the fluid
approximation

o (@) = om(0)87 [1 + o (1)0m(@,m) + .. |

® |nsert into Euler equation:

CoOm
Pm

Notice that constant, background stress has no dynamical effect.

u' '+ aHu', + 0"V 0'6y, = (unchanged 2nd-order terms)
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Beyond the fluid
approximation

o (@,m) = 0 ()0 [1 4 co(n)dm(x,n) + ..
® |nsert into Euler equation, take divergence again:

CoOm

0! + aHO,, + ViU V%0m = (unchanged 2nd-order terms)

Pm

Notice that constant, background stress has no dynamical effect.
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Beyond the fluid
approximation

o (@) = om(0)87 [1 + o (1)0m(@,m) + .. |

® |nsert into Euler equation, take divergence again:

CoOm
Pm

Notice that constant, background stress has no dynamical effect.

0! + aHO,, + ViU V%0m = (unchanged 2nd-order terms)

® Additional contribution is suppressed on large scales:
two additional derivatives, ~k? in Fourier space

® Hence, can take into account stress tensor at leading
order by adding one term to equations, at the price of
an unknown, free coefficient o, C,
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Cold collisionless matter
= effective fluid

® At leading order, this is just another linear term in
the equations (but with more derivatives)

® By redefining coefficient, correction to final density
field can be written as (with free coefficient Cy?2)

s (k. 1) s [1 _ Cf(n)k2] Do) ;  Pxro(k) = Pyro(k) — 202(n)k2 P (k)

Similar size as Pnio(k)
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Cold collisionless matter
= effective fluid

® At leading order, this is just another linear term in
the equations (but with more derivatives)

® By redefining coefficient, correction to final density
field can be written as (with free coefficient Cy?2)

s (k. 1) s [1 _ Cf(n)k2] Do) ;  Pxro(k) = Pyro(k) — 202(n)k2 P (k)

Similar size as Pnio(k)

® |n fact, theoretical consistency forces us to
introduce C;? (~ eff. sound horizon) as counterterm:

d>p
(2m)3

P (k, n) =3PL(k, n)/ Fi(p,—p,k)PL(p,n)
o k*/p* for p >k

Yes, P2; also leads to a counterterm, but that one is much smaller.
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Effective Field Theory of
Structure Formation

|dea: allow for all counterterms in effective fluid equations consistent
with symmetries: general covariance; mass and momentum conservation

Order different contribution according to their scaling with k

Only one relevant scale: kni, where (roughly) matter density field
becomes fully nonlinear:

_ d°p  _
kNIZJ:/(QT‘_)gp 2PL(p)

For this ordering, we typically approximate Pi(k) ~ k" as power Iaw W|th
n ~-1.5, allowing us to compute loop integrals analytically. | E g, T T

Ll Ll Ll AT | )
10~* 1073 1072 1071 100
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Non-gravitational
interactions of baryons

® So far, completely ignored non-gravitational interactions,
while | argued that we are including baryons...

® |et’s consider the effect of pressure then, assuming some

relation p=p(p) (barotropic fluid). Pressure term in baryon
Euler equation, at leading order:

py, L0 p(pw) = py ' O; d_pépb = 20,01
) i ]
with C? — —p; )Py = Ppob
dp

® Precisely the same shape as effective stress contribution!
As long as we are interested only in total matter, we can
combine the two into a single C;2. CoTm gis

Pm
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Alternative: Lagrangian approach
to structure formation

So far, worked with Eulerian fields at fixed
spatial position x

Alternative: follow mass elements along their
trajectory, labeling them with initial position g

Time-dependent position given by
za(q,n) = q+ s(q,n)

Then use geodesic equations:

dﬁi B pz
dt  am
dp* . m
= —Hp' — —0,;¥
dt b a q
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Alternative: Lagrangian approach
to structure formation

® So far, worked with Eulerian fields at fixed
spatial position x

® Alternative: follow mass elements along their
trajectory, labeling them with initial position g

® Time-dependent position given by
ra(q,n) = q+ s(q, 1)

® Then use geodesic equations:

s"(q,n) +aHs (q,n) + V¥ (xa(g,n),n) =0



Alternative: Lagrangian approach
to structure formation

® At initial time, density perturbations were negligible, so
a given element d3q corresponds to equal mass
everywhere. Hence, density is given directly by Jacobian:

pm(N)d*q = pm(x,n)d°®

Pm 8q ox !
= M 146, = =14 = |65 + 0q,i55(q,m)]

® Can insert On, into Poisson equation to obtain W.
Perturbation theory then proceeds by writing

s:s(l)+s(2)+...

and solving equation for displacement order by order.

35



Alternative: Lagrangian approach
to structure formation

Note: two matter elements can end up
at the same final position x! -

za(q,n) = q+ s(q,n)

Known as shell crossing

Possible because (dark) matter is
collisionless.

This cannot happen in the fluid picture
though.

In this sense, Lagrangian approach is
closer to the correct physics.

36
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Phasespace view of
structure formation

® |nitial stages of
collapse of
overdense region

Velocity fm(2,

distribution

(o

Vg
Phase-space Uz,
sheet '
Pm (X, 1)
fm(x, p,0) = =2 20)385) (p — mum(x, 1))

<=> no velocity dispersion



Phasespace view of
structure formation

® |ater stages of m |
collapse of
overdense region

A Ug




39

Structure formation beyond
perturbation theory

® |nh order to take this phasespace evolution
into account properly, need to go beyond
fluid picture and perturbation theory.

® Back to collisionless Boltzmann equation!

® TJopic of lecture 3.



