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Outline of lectures
1. The problem: collisionless Boltzmann equation and fluid approximation

1. Linear evolution

2. Nonlinear evolution of matter

1. Perturbation theory

2. Simulations

3. Phenomenology of nonlinear matter distribution

3. Formation and distribution of galaxies

1. Galaxy formation in a nutshell

2. Spherical collapse model

3. Physical clustering of halos and galaxies; bias

4. Observed clustering of galaxies

4. Beyond ΛCDM
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Notation

• Comoving coordinates:

• Conformal time:

• Comoving distance:

• Particle velocity/momentum:

• Fluid velocity; divergence:

• Gravitational potential:

D
Symbols

D.1 Mathematical and geometrical definitions

Symbol Explanation

ḟ (x, t) ≡ ∂f (x, t)/∂t Partial derivative with respect to time
f ′(x,η) ≡ ∂f (x,η)/∂η Derivative with respect to conformal time
φ,α ≡ ∂φ(x)/∂xα Partial derivative with respect to coordinate xα

δν
α , δij Kronecker symbol

δ
(n)
D (k − k) Dirac-delta distribution in n dimensions

êx,y,z Unit vector in direction of three spatial Cartesian axes
n̂ 3D unit vector (full-sky position)
θ 2D Euclidean vector (flat-sky position)
d' Solid angle integration measure

Throughout, spatial indices ijk . . . are raised and lowered with δij .

D.2 Frequently used relations
Frequently used time integration measures are

dη = dt

a(t)
= da

a2H(a)
= d lna

aH(a)
. (D.1)

For light rays, we further have

dχ = −dη = dz

H(z)
. (D.2)

Our convention for the perturbed FLRW metric is (Eq. (3.49))

g00(x, t) = −1 − 2)(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2*(x, t)] . (D.3)
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Recap
• In Lecture 1, we derived the collisionless Boltzmann 

equation for DM and baryons

• Combined with Poisson equation for gravitational 
potential, these govern all of cosmological structure 
formation at late times

• We then took moments to obtain the fluid equations 
(continuity & Euler), and dropped the curl velocity

• Result:
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)
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Recap

• We then derived the linear approximation, 
when all of δ,θ,Ψ are small:

The density at all points in (real or Fourier) space evolves independently!

<latexit sha1_base64="iUHoarv37+v2TAQA5/NGL+/N5SM="></latexit>

�
(1)(x, ⌘) = D(⌘)�0(x)

D
00 + aHD

0 =
3

2
⌦m(⌘)(aH)2D(⌘)

⌦m(⌘) =
⇢m(⌘)

⇢cr(⌘)
Time-dependent density parameter; 
=0.3 today, =1 in the past

5



328 Modern Cosmology

FIGURE 12.1 Standard deviation σW =
√〈

δ2
W

〉
of the linear matter density field at z = 0 smoothed with real-space

tophat and sharp-k filters, as a function of the smoothing scale R. When filtered on a large scale, the fluctuations
of the density field are small, while fluctuations on small scales become large. Evaluating the black solid curve

at R = 8h−1 Mpc yields the commonly used amplitude parameter σ8. We also show the RMS value
√〈

#2
W

〉
of the

gravitational potential multiplied by 104. The potential fluctuations are very small on all scales.

Clearly, we have to do better. Notice also that the precise filter shape is not important for
this conclusion, as any reasonable filter leads to the same trend.

We can also compute the variance of metric perturbations $ as a function of scale. This
is also shown in the figure. Interestingly, the typical potential fluctuations remain small,
! 10−4, on all scales.3 This is easy to understand: the integral in Eq. (12.4) is dominated by
high wavenumbers k, and peaks near the scale picked out by the filter W . On small scales,
then, the integral is dominated by contributions where k " aH ∼ 3 · 10−4 h Mpc−1, that
is, spatial scales that are much smaller than the Hubble radius. Then, the first term in the
Poisson equation (12.1) is by far the dominant one (note that #′ is at most of order (a′/a)#),
and it simply becomes

−k2$ = 4πGa2ρmδm. (12.5)

This is the well-known Poisson equation of Newtonian gravity, with additional factors of a

because the wavenumber k is in comoving units. Thus, the magnitude of $(k) is propor-
tional to δm(k)/k2, and so is highly suppressed compared to the density on small scales.
This explains why the typical potential fluctuations in the universe remain small even
though density fluctuations become large. Another way to see the same result is to recall
the evolution of potential and density during matter domination: the potentials remain
constant, while the density perturbations grow as the linear growth factor D+(η) ∝ a(η).

We can use this result to our advantage. First, given the smallness of spacetime pertur-
bations, we can continue to work to linear order in the potential $. This means that the

3
Technically,

〈
#2

W

〉
diverges logarithmically when including modes with k → 0. Only potential perturbations

within our current horizon are observable, so we have used a cutoff kmin = 10−4 hMpc−1. The precise value of
this cutoff has a very small impact on the numerical result.

• We looked at the variance of 
matter density field filtered 
on different scales:  

• Shape is consequence of 
initial conditions from 
inflation

• Clearly, to describe universe 
on scales smaller than 
hundreds of Mpc, we need to 
go beyond linear theory!

Going beyond linear 
theory
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• Let’s go back to full fluid equations

• They contain nonlinear terms, specifically 
quadratic terms, moved here to the r.h.s.:
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δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)

is just linear!

Going beyond linear 
theory
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• That structure suggests iterative approach: 
plug in linear solution to nonlinear source 
terms, and solve for second order:

where we have used the Poisson equation for 

Going beyond linear 
theory334 Modern Cosmology

corresponds to a longitudinal, i.e. curl-free velocity field. In fact, you can show in Exer-
cise 12.2 that the vorticity is not sourced in the system Eq. (12.23) even at nonlinear order.
This means that it keeps decaying (ωi

m ∝ 1/a) and can be neglected here.
Eq. (12.24) now suggests an iterative approach to the solution: our linear solution was

obtained neglecting the nonlinear terms on the right-hand side. Our next approximation
is to insert the linear solution into the nonlinear terms:

δ(2)′ + θ (2) = −δ(1)θ (1) − (u(1))j
∂

∂xj
δ(1),

θ (2)′ + aHθ (2) + 3
2
%m(η)(aH)2δ(2) = −(u(1))j

∂

∂xj
θ (1) − [∂i (u

(1))j ][∂j (u
(1))i], (12.27)

where we have used the Poisson equation for '(2),

∇2'(2) = 3
2
%m(η)(aH)2δ(2). (12.28)

This is now an inhomogeneous but still linear system of partial differential equations for
δ(2), θ (2). In fact, it can be turned into a system of ordinary differential equations and then
solved. We will see how this miracle happens in a moment. Eq. (12.27) shows that δ(2) and
θ (2) are sourced by terms that involve the square of the linear fields. Then, on large scales
where these linear fields are small (see Fig. 12.1), the source terms will be even smaller so
that δ(2) is a small correction to δ(1). The end result we are aiming for, then, is to expand the
nonlinear field δm as

δm(x,η) = δ(1)(x,η) + δ(2)(x,η) + · · · + δ(n)(x,η),

θm(x,η) = θ (1)(x,η) + θ (2)(x,η) + · · · + θ (n)(x,η), (12.29)

where the source terms for δ(n), θ (n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ (n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
easy to transform, since they are linear. The real-space products on the right-hand side
turn into convolutions in Fourier space, where the linear density, velocity, and potential
are simply related in Fourier space:

(u(1))i(k,η) = iki

k2 aHf δ(1)(k,η),

'(k,η) = −3
2
%m(η)

(aH)2

k2 δm(k,η). (12.30)
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where the source terms for δ(n), θ (n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ (n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
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• Idea: expand all fields according to:

• Each order collects all terms that have the same 
number of linear fields δ(1), θ(1)

• This approach is expected to work as long as each 
successive term in the series is smaller than the 
previous one

• Of course, in practice we always stop at some n

Perturbation theory

334 Modern Cosmology

corresponds to a longitudinal, i.e. curl-free velocity field. In fact, you can show in Exer-
cise 12.2 that the vorticity is not sourced in the system Eq. (12.23) even at nonlinear order.
This means that it keeps decaying (ωi

m ∝ 1/a) and can be neglected here.
Eq. (12.24) now suggests an iterative approach to the solution: our linear solution was

obtained neglecting the nonlinear terms on the right-hand side. Our next approximation
is to insert the linear solution into the nonlinear terms:
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∂
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θ (2)′ + aHθ (2) + 3
2
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∂
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(1))j ][∂j (u
(1))i], (12.27)

where we have used the Poisson equation for '(2),

∇2'(2) = 3
2
%m(η)(aH)2δ(2). (12.28)

This is now an inhomogeneous but still linear system of partial differential equations for
δ(2), θ (2). In fact, it can be turned into a system of ordinary differential equations and then
solved. We will see how this miracle happens in a moment. Eq. (12.27) shows that δ(2) and
θ (2) are sourced by terms that involve the square of the linear fields. Then, on large scales
where these linear fields are small (see Fig. 12.1), the source terms will be even smaller so
that δ(2) is a small correction to δ(1). The end result we are aiming for, then, is to expand the
nonlinear field δm as

δm(x,η) = δ(1)(x,η) + δ(2)(x,η) + · · · + δ(n)(x,η),

θm(x,η) = θ (1)(x,η) + θ (2)(x,η) + · · · + θ (n)(x,η), (12.29)

where the source terms for δ(n), θ (n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ (n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
easy to transform, since they are linear. The real-space products on the right-hand side
turn into convolutions in Fourier space, where the linear density, velocity, and potential
are simply related in Fourier space:

(u(1))i(k,η) = iki

k2 aHf δ(1)(k,η),

'(k,η) = −3
2
%m(η)

(aH)2

k2 δm(k,η). (12.30)
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• So let’s proceed with solving at second 
order:

• R.h.s. involves derivatives and velocity u: 
more easily solved in Fourier space

• The linear velocity is given by

Second order

334 Modern Cosmology

corresponds to a longitudinal, i.e. curl-free velocity field. In fact, you can show in Exer-
cise 12.2 that the vorticity is not sourced in the system Eq. (12.23) even at nonlinear order.
This means that it keeps decaying (ωi

m ∝ 1/a) and can be neglected here.
Eq. (12.24) now suggests an iterative approach to the solution: our linear solution was

obtained neglecting the nonlinear terms on the right-hand side. Our next approximation
is to insert the linear solution into the nonlinear terms:

δ(2)′ + θ (2) = −δ(1)θ (1) − (u(1))j
∂

∂xj
δ(1),

θ (2)′ + aHθ (2) + 3
2
%m(η)(aH)2δ(2) = −(u(1))j

∂

∂xj
θ (1) − [∂i (u

(1))j ][∂j (u
(1))i], (12.27)

where we have used the Poisson equation for '(2),

∇2'(2) = 3
2
%m(η)(aH)2δ(2). (12.28)

This is now an inhomogeneous but still linear system of partial differential equations for
δ(2), θ (2). In fact, it can be turned into a system of ordinary differential equations and then
solved. We will see how this miracle happens in a moment. Eq. (12.27) shows that δ(2) and
θ (2) are sourced by terms that involve the square of the linear fields. Then, on large scales
where these linear fields are small (see Fig. 12.1), the source terms will be even smaller so
that δ(2) is a small correction to δ(1). The end result we are aiming for, then, is to expand the
nonlinear field δm as

δm(x,η) = δ(1)(x,η) + δ(2)(x,η) + · · · + δ(n)(x,η),

θm(x,η) = θ (1)(x,η) + θ (2)(x,η) + · · · + θ (n)(x,η), (12.29)

where the source terms for δ(n), θ (n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ (n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
easy to transform, since they are linear. The real-space products on the right-hand side
turn into convolutions in Fourier space, where the linear density, velocity, and potential
are simply related in Fourier space:

(u(1))i(k,η) = iki

k2 aHf δ(1)(k,η),

'(k,η) = −3
2
%m(η)

(aH)2

k2 δm(k,η). (12.30)
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corresponds to a longitudinal, i.e. curl-free velocity field. In fact, you can show in Exer-
cise 12.2 that the vorticity is not sourced in the system Eq. (12.23) even at nonlinear order.
This means that it keeps decaying (ωi

m ∝ 1/a) and can be neglected here.
Eq. (12.24) now suggests an iterative approach to the solution: our linear solution was

obtained neglecting the nonlinear terms on the right-hand side. Our next approximation
is to insert the linear solution into the nonlinear terms:

δ(2)′ + θ (2) = −δ(1)θ (1) − (u(1))j
∂
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δ(1),
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2
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(1))j ][∂j (u
(1))i], (12.27)

where we have used the Poisson equation for '(2),

∇2'(2) = 3
2
%m(η)(aH)2δ(2). (12.28)

This is now an inhomogeneous but still linear system of partial differential equations for
δ(2), θ (2). In fact, it can be turned into a system of ordinary differential equations and then
solved. We will see how this miracle happens in a moment. Eq. (12.27) shows that δ(2) and
θ (2) are sourced by terms that involve the square of the linear fields. Then, on large scales
where these linear fields are small (see Fig. 12.1), the source terms will be even smaller so
that δ(2) is a small correction to δ(1). The end result we are aiming for, then, is to expand the
nonlinear field δm as

δm(x,η) = δ(1)(x,η) + δ(2)(x,η) + · · · + δ(n)(x,η),

θm(x,η) = θ (1)(x,η) + θ (2)(x,η) + · · · + θ (n)(x,η), (12.29)

where the source terms for δ(n), θ (n) involve n powers of the linear fields, and so each
term in the series Eq. (12.29) is smaller than the previous one. As long as this holds, our
perturbation-theory prediction for δm and θm should become more and more accurate as
we increase n, i.e. include more higher-order terms. Computing the terms in the expansion
Eq. (12.29), and determining the scales on which this expansion is valid, are the main goals
of the perturbative approach to nonlinear large-scale structure. Notice that, starting from
Eq. (12.25), we have dropped the subscripts “m” on δ(n), θ (n) for notational clarity, since we
deal exclusively with the matter fields in the following.

To begin, let us transform Eq. (12.27) to Fourier space, x → k. The left-hand sides are
easy to transform, since they are linear. The real-space products on the right-hand side
turn into convolutions in Fourier space, where the linear density, velocity, and potential
are simply related in Fourier space:

(u(1))i(k,η) = iki

k2 aHf δ(1)(k,η),

'(k,η) = −3
2
%m(η)

(aH)2

k2 δm(k,η). (12.30)
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Second order
• Fourier transform, and pull out time 

dependence of source term (important that 
we can do that!)
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Second order
• Fourier transform, and pull out time 

dependence of source term (important that 
we can do that!)

336 Modern Cosmology

Here, the time-independent source terms are given by

Sδ(k) =
∫

d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ
(3)
D (k − k1 − k2)

×
[

1 + k1 · k2

k2
1

]

δ0(k1)δ0(k2),

Sθ (k) = −
∫

d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ
(3)
D (k − k1 − k2)

×
[

k1 · k2

k2
1

+ (k1 · k2)
2

k2
1k2

2

]

δ0(k1)δ0(k2). (12.34)

In the $CDM cosmology and dark energy cosmologies with similar expansion histories, it
turns out that the quantity %m(η)/f 2(η) is very close to 1. Recall from Eq. (8.78) that the
growth rate can be well approximated by f (η) #

[
%m(η)

]0.55. Thus, it is a good approxima-
tion (in practice, better than 1% in δ(2), θ (2)), to set this ratio to unity. Then, the only terms
in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
the following power-law ansatz:

δ(2)(k,D+) = Aδ(k)Dn
+; θ̂ (2)(k,D+) = Aθ (k)Dn

+. (12.35)

Inserting this into Eq. (12.33) yields

nAδD
n
+ + AθD

n
+ = D2

+Sδ,

nAθD
n
+ + 1

2
AθD

n
+ + 3

2
AδD

n
+ = D2

+Sθ . (12.36)

Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields

Aδ(k) = 5
7
Sδ(k) − 2

7
Sθ (k),

Aθ (k) = −3
7
Sδ(k) + 4

7
Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write

δ(2)(k,η) = D2
+(η)

∫
d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ
(3)
D (k − k1 − k2)

× F2(k1,k2)δ0(k1)δ0(k2),

θ (2)(k,η) = aHf θ̂ (2) = −aHf D2
+(η)

∫
d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ
(3)
D (k − k1 − k2)

× G2(k1,k2)δ0(k1)δ0(k2), (12.38)
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Second order
• So we can separate the time- and k-

dependent parts even at second order!
336 Modern Cosmology

Here, the time-independent source terms are given by
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tion (in practice, better than 1% in δ(2), θ (2)), to set this ratio to unity. Then, the only terms
in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
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Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields
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Aθ (k) = −3
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7
Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write
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Second order

• Solving coupled set of sourced first-order 
ODE using standard techniques* yields:

• Velocity divergence θ obeys similar equation

336 Modern Cosmology

Here, the time-independent source terms are given by
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in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
the following power-law ansatz:

δ(2)(k,D+) = Aδ(k)Dn
+; θ̂ (2)(k,D+) = Aθ (k)Dn

+. (12.35)

Inserting this into Eq. (12.33) yields
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Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields

Aδ(k) = 5
7
Sδ(k) − 2

7
Sθ (k),

Aθ (k) = −3
7
Sδ(k) + 4

7
Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write

δ(2)(k,η) = D2
+(η)

∫
d3k1

(2π)3

∫
d3k2

(2π)3 (2π)3δ
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θ (2)(k,η) = aHf θ̂ (2) = −aHf D2
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∫
d3k2

(2π)3 (2π)3δ
(3)
D (k − k1 − k2)

× G2(k1,k2)δ0(k1)δ0(k2), (12.38)
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We have symmetrized these kernels in k1, k2 for convenience, since they are integrated
against a symmetric integrand in Eq. (12.38).

We have thus obtained a closed-form solution for the second-order density and veloc-
ity fields, given the linear density field at a reference epoch δ0(k). This procedure can be
straightforwardly continued to higher order. For example, the equation for δ(3), θ̂ (3) looks
exactly like Eq. (12.33) on the left-hand side; the source terms on the right-hand side now
involve products of δ(1) and δ(2), θ̂ (2), and scale as D3

+(η). Approximating $m/f 2 = 1 again,
the equations can be integrated analytically leading to δ(3), θ̂ (3) ∝ D3

+. This continues to
any higher order, and the nth order solution can be written as

δ(n)(k,η) = Dn
+(η)

[
n∏
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∫
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]

(2π)3δ
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× Gn(k1, · · · ,kn)δ0(k1) · · · δ0(kn). (12.40)

This trivially holds for n = 1 (linear order) as well if we define F1 = G1 = 1. Notice that
the nth order density and velocity fields involve precisely n powers of the linear matter
density δ0, as anticipated in the discussion below Eq. (12.29). The kernels Fn, Gn are fully
symmetric polynomials in their arguments, and can be computed iteratively order by order
(for convenient recurrence relations, see Bernardeau et al., 2002).

This very neat result allows us to explicitly calculate how structure in the universe
evolves nonlinearly. There is in fact an intuitive representation of the perturbative expan-
sion in terms of diagrams, as shown in Fig. 12.2, which is closely analogous to the Feynman
diagrams of quantum field theory. The second-order density field δ(2) is constructed by
joining two instances of the initial (linear) density field with an F2 kernel. Similarly, the
nth order field is made by joining n initial density fields with the nth order kernel Fn. The
analogous rules hold for the expansion of the velocity divergence.

Most importantly, the perturbation-theory prediction Eq. (12.40) allows us to compute
the statistics of the nonlinear, evolved density in terms of the statistics of the linear field
δ0(k). The power spectrum of δm(k) can be written as

〈
δm(k,η)δm(k′,η)

〉
=

n+l even∑

n,l=1,2,.···

〈
δ(n)(k,η)δ(l)(k′,η)

〉
. (12.41)
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time-independent perturbation theory kernel

* Assume matter domination when integrating equations; accurate to better than 1%.



Second order

• Solving coupled set of sourced first-order 
ODE using standard techniques* yields:

• Velocity divergence θ obeys similar equation
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Here, the time-independent source terms are given by
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In the $CDM cosmology and dark energy cosmologies with similar expansion histories, it
turns out that the quantity %m(η)/f 2(η) is very close to 1. Recall from Eq. (8.78) that the
growth rate can be well approximated by f (η) #

[
%m(η)

]0.55. Thus, it is a good approxima-
tion (in practice, better than 1% in δ(2), θ (2)), to set this ratio to unity. Then, the only terms
in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
the following power-law ansatz:

δ(2)(k,D+) = Aδ(k)Dn
+; θ̂ (2)(k,D+) = Aθ (k)Dn

+. (12.35)

Inserting this into Eq. (12.33) yields
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Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields

Aδ(k) = 5
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Sθ (k),

Aθ (k) = −3
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Sδ(k) + 4
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Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write

δ(2)(k,η) = D2
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We have symmetrized these kernels in k1, k2 for convenience, since they are integrated
against a symmetric integrand in Eq. (12.38).

We have thus obtained a closed-form solution for the second-order density and veloc-
ity fields, given the linear density field at a reference epoch δ0(k). This procedure can be
straightforwardly continued to higher order. For example, the equation for δ(3), θ̂ (3) looks
exactly like Eq. (12.33) on the left-hand side; the source terms on the right-hand side now
involve products of δ(1) and δ(2), θ̂ (2), and scale as D3

+(η). Approximating $m/f 2 = 1 again,
the equations can be integrated analytically leading to δ(3), θ̂ (3) ∝ D3

+. This continues to
any higher order, and the nth order solution can be written as
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This trivially holds for n = 1 (linear order) as well if we define F1 = G1 = 1. Notice that
the nth order density and velocity fields involve precisely n powers of the linear matter
density δ0, as anticipated in the discussion below Eq. (12.29). The kernels Fn, Gn are fully
symmetric polynomials in their arguments, and can be computed iteratively order by order
(for convenient recurrence relations, see Bernardeau et al., 2002).

This very neat result allows us to explicitly calculate how structure in the universe
evolves nonlinearly. There is in fact an intuitive representation of the perturbative expan-
sion in terms of diagrams, as shown in Fig. 12.2, which is closely analogous to the Feynman
diagrams of quantum field theory. The second-order density field δ(2) is constructed by
joining two instances of the initial (linear) density field with an F2 kernel. Similarly, the
nth order field is made by joining n initial density fields with the nth order kernel Fn. The
analogous rules hold for the expansion of the velocity divergence.

Most importantly, the perturbation-theory prediction Eq. (12.40) allows us to compute
the statistics of the nonlinear, evolved density in terms of the statistics of the linear field
δ0(k). The power spectrum of δm(k) can be written as

〈
δm(k,η)δm(k′,η)

〉
=
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time-independent perturbation theory kernel

* Assume matter domination when integrating equations; accurate to better than 1%.

grows twice as fast as linear density



Diagrammatic 
representation

• F2 corresponds to interaction vertex (with 3-
momentum conservation) coupling two incoming δ0
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Here, the time-independent source terms are given by
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In the $CDM cosmology and dark energy cosmologies with similar expansion histories, it
turns out that the quantity %m(η)/f 2(η) is very close to 1. Recall from Eq. (8.78) that the
growth rate can be well approximated by f (η) #

[
%m(η)

]0.55. Thus, it is a good approxima-
tion (in practice, better than 1% in δ(2), θ (2)), to set this ratio to unity. Then, the only terms
in Eq. (12.33) that depend explicitly on time (via D+) are the source terms. Let us then make
the following power-law ansatz:

δ(2)(k,D+) = Aδ(k)Dn
+; θ̂ (2)(k,D+) = Aθ (k)Dn

+. (12.35)

Inserting this into Eq. (12.33) yields
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Clearly, for this to hold at all times D+, we need n = 2. With this, solving for Aδ and Aθ yields

Aδ(k) = 5
7
Sδ(k) − 2

7
Sθ (k),

Aθ (k) = −3
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Sδ(k) + 4
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Sθ (k). (12.37)

Note that this is only one, the fastest-growing solution, but this is the one we are interested
in anyway. Going back to conformal time η, we can thus write

δ(2)(k,η) = D2
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∫
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∫
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FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ (n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.

Now, this result is not very practical, since we have to sum over infinitely many terms. In
fact, perturbation theory makes sense only if we can truncate the sum after a finite number
of terms, and the discarded terms are smaller than the ones we include. So let us look at
the first three terms in the sum:

〈
δm(k,η)δm(k′,η)

〉
= D2

+(η)
〈
δ0(k)δ0(k

′)
〉

+
〈
δ(2)(k,η)δ(2)(k′,η)

〉
+ 2

〈
δ(1)(k,η)δ(3)(k′,η)

〉
+ · · · . (12.42)

The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,

Eq. (12.40)



Diagrammatic 
representation

• Similarly, we can go to higher orders:
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FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ (n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.

Now, this result is not very practical, since we have to sum over infinitely many terms. In
fact, perturbation theory makes sense only if we can truncate the sum after a finite number
of terms, and the discarded terms are smaller than the ones we include. So let us look at
the first three terms in the sum:

〈
δm(k,η)δm(k′,η)

〉
= D2

+(η)
〈
δ0(k)δ0(k

′)
〉

+
〈
δ(2)(k,η)δ(2)(k′,η)

〉
+ 2

〈
δ(1)(k,η)δ(3)(k′,η)

〉
+ · · · . (12.42)

The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,
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We have symmetrized these kernels in k1, k2 for convenience, since they are integrated
against a symmetric integrand in Eq. (12.38).

We have thus obtained a closed-form solution for the second-order density and veloc-
ity fields, given the linear density field at a reference epoch δ0(k). This procedure can be
straightforwardly continued to higher order. For example, the equation for δ(3), θ̂ (3) looks
exactly like Eq. (12.33) on the left-hand side; the source terms on the right-hand side now
involve products of δ(1) and δ(2), θ̂ (2), and scale as D3

+(η). Approximating $m/f 2 = 1 again,
the equations can be integrated analytically leading to δ(3), θ̂ (3) ∝ D3

+. This continues to
any higher order, and the nth order solution can be written as

δ(n)(k,η) = Dn
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× Gn(k1, · · · ,kn)δ0(k1) · · · δ0(kn). (12.40)

This trivially holds for n = 1 (linear order) as well if we define F1 = G1 = 1. Notice that
the nth order density and velocity fields involve precisely n powers of the linear matter
density δ0, as anticipated in the discussion below Eq. (12.29). The kernels Fn, Gn are fully
symmetric polynomials in their arguments, and can be computed iteratively order by order
(for convenient recurrence relations, see Bernardeau et al., 2002).

This very neat result allows us to explicitly calculate how structure in the universe
evolves nonlinearly. There is in fact an intuitive representation of the perturbative expan-
sion in terms of diagrams, as shown in Fig. 12.2, which is closely analogous to the Feynman
diagrams of quantum field theory. The second-order density field δ(2) is constructed by
joining two instances of the initial (linear) density field with an F2 kernel. Similarly, the
nth order field is made by joining n initial density fields with the nth order kernel Fn. The
analogous rules hold for the expansion of the velocity divergence.

Most importantly, the perturbation-theory prediction Eq. (12.40) allows us to compute
the statistics of the nonlinear, evolved density in terms of the statistics of the linear field
δ0(k). The power spectrum of δm(k) can be written as

〈
δm(k,η)δm(k′,η)

〉
=

n+l even∑

n,l=1,2,.···

〈
δ(n)(k,η)δ(l)(k′,η)

〉
. (12.41)

PT kernels Fn obey recursion relation.



Matter power 
spectrum

• Since we don’t know the initial conditions at 
the field level, let’s compute statistics

• Power spectrum:

• Why these terms and not others?

• Count terms that have equal numbers of δ0

• Terms with odd number of δ0 vanish

338 Modern Cosmology

FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ (n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.

Now, this result is not very practical, since we have to sum over infinitely many terms. In
fact, perturbation theory makes sense only if we can truncate the sum after a finite number
of terms, and the discarded terms are smaller than the ones we include. So let us look at
the first three terms in the sum:

〈
δm(k,η)δm(k′,η)

〉
= D2

+(η)
〈
δ0(k)δ0(k

′)
〉

+
〈
δ(2)(k,η)δ(2)(k′,η)

〉
+ 2

〈
δ(1)(k,η)δ(3)(k′,η)

〉
+ · · · . (12.42)

The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,
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Matter power 
spectrum

• Terms with odd number of δ0 vanish because 
δ0 is Gaussian

• For terms with even number, we use Wicks’ 
theorem:
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vanishes:

〈δ0(x1)δ0(x2)δ0(x3)〉 = 0. (12.44)

The expectation value with four fields is nonzero, but completely determined by ξ(r):

〈δ0(x1)δ0(x2)δ0(x3)δ0(x4)〉 = ξ(x1 − x2)ξ(x4 − x3) + ξ(x1 − x3)ξ(x4 − x2)

+ ξ(x1 − x4)ξ(x3 − x2), (12.45)

where the three terms arise from the three distinct possibilities of combining the four fields
into two pairs, which each yield a correlation function via Eq. (12.43). This expansion by pairing
fields similarly works for any higher, even number of fields, and it is known as Wick’s theorem.
The Fourier-space counterparts to Eqs. (12.43)–(12.45) can be derived straightforwardly by tak-
ing the Fourier transform (we in fact highly recommend readers to go through these steps). We
obtain

〈
δ0(k)δ0(k′)

〉
= (2π)3δ

(3)
D (k + k′)P (k), (12.46)

where P(k) is the Fourier transform of ξ(r), and

〈δ0(k1)δ0(k2)δ0(k3)〉 = 0

〈δ0(k1)δ0(k2)δ0(k3)δ0(k4)〉 = (2π)6δ
(3)
D (k1 + k2)δ

(3)
D (k3 + k4)P (k1)P (k3)

+ (2π)6δ
(3)
D (k1 + k3)δ

(3)
D (k2 + k4)P (k1)P (k2)

+ (2π)6δ
(3)
D (k1 + k4)δ

(3)
D (k2 + k3)P (k1)P (k2). (12.47)

The NLO contributions can be evaluated directly by inserting the solution Eq. (12.40),
and using Wick’s theorem Eq. (12.47). Again, the diagrammatic representation illustrates
this formalism intuitively (Fig. 12.3): the power spectrum correlates two evolved density
fields. Our goal is to connect them using their relation to the linear density fields shown in
Fig. 12.2. So, we contract the instances of the linear density field in pairs, where each pair
results in a linear power spectrum PL. The simplest way to connect is to just directly pair
the final density fields. This is the leading, “tree-level” contribution, which is the linear
power spectrum PL(k). There are two ways to connect the evolved field using four linear
fields, yielding two linear power spectra, which are the two contributions making up the
next-to-leading order in Eq. (12.42). Analogous to the Feynman diagrams of field theory,
there are precise rules underlying the diagrams (deriving these rules is left as an exercise to
the field-theory-inclined reader), which offer an efficient shortcut to the underlying equa-
tions. Alternatively, one can go ahead and compute directly using Wick’s theorem, which
at this order is not much slower.

As you will derive in Exercise 12.5, the result is

P(k,η) = PL(k,η) + P NLO(k,η) + · · · , (12.48)

P NLO(k,η) = P (22)(k,η) + 2P (13)(k,η),
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FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ (n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.

Now, this result is not very practical, since we have to sum over infinitely many terms. In
fact, perturbation theory makes sense only if we can truncate the sum after a finite number
of terms, and the discarded terms are smaller than the ones we include. So let us look at
the first three terms in the sum:

〈
δm(k,η)δm(k′,η)

〉
= D2

+(η)
〈
δ0(k)δ0(k

′)
〉

+
〈
δ(2)(k,η)δ(2)(k′,η)

〉
+ 2

〈
δ(1)(k,η)δ(3)(k′,η)

〉
+ · · · . (12.42)

The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,

leads directly to

(this can be generalized to include small 
amount of primordial non-Gaussianity)
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FIGURE 12.2 Diagrammatic representation of the second-order density field δ(2) (left) and the nth order density field
(right). In each case, the final density field is connected to n initial density fields by the interaction kernel Fn (with
n = 2 in the case of δ(2)). Analogous diagrams describe the velocity divergence θ (n) in terms of kernels Gn. Here we
suppress the time arguments for clarity.
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The first line contains the linear power spectrum at time η. The terms in the second line
make up the leading nonlinear correction to the matter power spectrum, i.e. the next-to-
leading order (NLO) matter power spectrum. They can be expanded using the fact that δ0

is a Gaussian field (see Box 12.1); in fact we have already dropped terms that involve three
fields δ0 in Eqs. (12.41)–(12.42), since they vanish.

12.1 Gaussian random fields
In cosmology, we usually compress the information in fields such as the matter density field
into summary statistics, like the by-now familiar matter power spectrum. We have learned that
the linear matter density δ0 is a Gaussian random field, a property inherited from the quan-
tum fluctuations during inflation. Let us now define this more precisely. We begin in real space.
A general Gaussian random field δ0(x) with vanishing mean is completely specified by its two-
point correlation function,

〈δ0(x1)δ0(x2)〉 = ξ(x1 − x2), (12.43)

which could be isotropic, ξ(r) = ξ(|r|), but it does not have to be (while ξ(−r) = ξ(r) has to
hold by symmetry). The expectation value of three fields, and in fact any odd number of fields,
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FIGURE 12.3 Diagrammatic representation of the next-to-leading order contributions to the matter power spectrum:〈
δ(2)(k)δ(2)(k′)

〉
(left) and

〈
δ(1)(k)δ(3)(k′)

〉
(right); we again suppress the time arguments for clarity. The upper diagrams

show how these contributions can be calculated by connecting the linear density fields δ(1)(k1), · · · δ(1)(k4) appearing
in the expansion of each nonlinear density field via the dashed lines (the kernels are the same as in Fig. 12.2 and
are not labeled). By Wick’s theorem, each connection yields a linear matter power spectrum and a Dirac delta. The
lower diagrams introduce a more standard, and economical representation: now the connection of two linear fields
is represented with an open circle, with each circle corresponding to a linear power spectrum. This representation
makes it clear why these contributions are also called “1-loop” contributions. Each loop in a diagram corresponds to
one integral over wavenumber (in the lower diagrams, p denotes the loop wavenumber).

where

P (22)(k,η) = 2
∫

d3p

(2π)3

[
F2(p,k − p)

]2
PL(p,η)PL(|k − p|,η),

P (13)(k,η) = 3PL(k,η)

∫
d3p

(2π)3 F3(p,−p,k)PL(p,η). (12.49)

Here, we have relabeled the wavenumbers ki that are integrated over as p. Notice that we
have to go to third order to consistently derive the NLO correction to the matter power
spectrum. The result is shown in Fig. 12.4. We see that on large scales (small k), P NLO(k) is
much smaller than the linear power spectrum. That is, nonlinear evolution is only a small
correction to linear evolution. This is the regime where perturbation theory is useful, since
we expect that higher-order terms in the expansion Eq. (12.48) are even smaller.

In fact, we can make this argument more precise. Notice that, as depicted in the bottom
panel of Fig. 12.3, the NLO contributions in Eq. (12.49) both involve what in field theory
is called a loop, an integral over wavenumber (or “momentum”). Since the linear matter
power spectrum does not have a simple shape, this integral has to be performed numer-
ically. In order to identify the relevant parameter controlling the relative size of the NLO

Eq. (12.42)
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much smaller than the linear power spectrum. That is, nonlinear evolution is only a small
correction to linear evolution. This is the regime where perturbation theory is useful, since
we expect that higher-order terms in the expansion Eq. (12.48) are even smaller.

In fact, we can make this argument more precise. Notice that, as depicted in the bottom
panel of Fig. 12.3, the NLO contributions in Eq. (12.49) both involve what in field theory
is called a loop, an integral over wavenumber (or “momentum”). Since the linear matter
power spectrum does not have a simple shape, this integral has to be performed numer-
ically. In order to identify the relevant parameter controlling the relative size of the NLO
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vanishes:

〈δ0(x1)δ0(x2)δ0(x3)〉 = 0. (12.44)

The expectation value with four fields is nonzero, but completely determined by ξ(r):

〈δ0(x1)δ0(x2)δ0(x3)δ0(x4)〉 = ξ(x1 − x2)ξ(x4 − x3) + ξ(x1 − x3)ξ(x4 − x2)

+ ξ(x1 − x4)ξ(x3 − x2), (12.45)

where the three terms arise from the three distinct possibilities of combining the four fields
into two pairs, which each yield a correlation function via Eq. (12.43). This expansion by pairing
fields similarly works for any higher, even number of fields, and it is known as Wick’s theorem.
The Fourier-space counterparts to Eqs. (12.43)–(12.45) can be derived straightforwardly by tak-
ing the Fourier transform (we in fact highly recommend readers to go through these steps). We
obtain

〈
δ0(k)δ0(k′)

〉
= (2π)3δ

(3)
D (k + k′)P (k), (12.46)

where P(k) is the Fourier transform of ξ(r), and

〈δ0(k1)δ0(k2)δ0(k3)〉 = 0

〈δ0(k1)δ0(k2)δ0(k3)δ0(k4)〉 = (2π)6δ
(3)
D (k1 + k2)δ

(3)
D (k3 + k4)P (k1)P (k3)

+ (2π)6δ
(3)
D (k1 + k3)δ

(3)
D (k2 + k4)P (k1)P (k2)

+ (2π)6δ
(3)
D (k1 + k4)δ

(3)
D (k2 + k3)P (k1)P (k2). (12.47)

The NLO contributions can be evaluated directly by inserting the solution Eq. (12.40),
and using Wick’s theorem Eq. (12.47). Again, the diagrammatic representation illustrates
this formalism intuitively (Fig. 12.3): the power spectrum correlates two evolved density
fields. Our goal is to connect them using their relation to the linear density fields shown in
Fig. 12.2. So, we contract the instances of the linear density field in pairs, where each pair
results in a linear power spectrum PL. The simplest way to connect is to just directly pair
the final density fields. This is the leading, “tree-level” contribution, which is the linear
power spectrum PL(k). There are two ways to connect the evolved field using four linear
fields, yielding two linear power spectra, which are the two contributions making up the
next-to-leading order in Eq. (12.42). Analogous to the Feynman diagrams of field theory,
there are precise rules underlying the diagrams (deriving these rules is left as an exercise to
the field-theory-inclined reader), which offer an efficient shortcut to the underlying equa-
tions. Alternatively, one can go ahead and compute directly using Wick’s theorem, which
at this order is not much slower.

As you will derive in Exercise 12.5, the result is

P(k,η) = PL(k,η) + P NLO(k,η) + · · · , (12.48)

P NLO(k,η) = P (22)(k,η) + 2P (13)(k,η),
Eq. (12.48)
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The NLO contributions can be evaluated directly by inserting the solution Eq. (12.40),
and using Wick’s theorem Eq. (12.47). Again, the diagrammatic representation illustrates
this formalism intuitively (Fig. 12.3): the power spectrum correlates two evolved density
fields. Our goal is to connect them using their relation to the linear density fields shown in
Fig. 12.2. So, we contract the instances of the linear density field in pairs, where each pair
results in a linear power spectrum PL. The simplest way to connect is to just directly pair
the final density fields. This is the leading, “tree-level” contribution, which is the linear
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at this order is not much slower.
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FIGURE 12.4 Linear and next-to-leading order matter power spectrum [Eq. (12.48)] (top panel), at z = 0 (thick lines)
and z = 1 (thin lines). The bottom panel shows the ratio of the NLO to linear power spectra. Perturbation theory is
expected to break down when the NLO correction becomes of similar magnitude to the linear power spectrum itself,
which in the fiducial cosmology happens for k ≈ 0.3hMpc−1 (z = 0) and k ≈ 0.6hMpc−1 (z = 1), respectively, close to
kNL in each case.

contribution compared to the linear matter power spectrum, we can use the fact that the
perturbation-theory kernels are typically of order one. Then we can guess that this param-
eter is

∼
∫ k d3p

(2π)3 PL(p) = 1
2π2

∫ k

0
p2dpPL(p), (12.50)

which corresponds to the variance of the linear density field filtered on a spatial scale
R ∼ 1/k [cf. Eq. (12.4)]. Perhaps you ask why we cut off the integral over p at the scale k. The
mathematical reason is that the perturbation-theory kernels in Eq. (12.48) are suppressed
when p $ k. The physical reason is that very small-scale perturbations to the matter den-
sity field do not influence the large-scale perturbations: the gravitational effect of a clump
of matter, far away from the clump, only depends on its total mass, and is independent of
how the mass is distributed within it. So, very roughly the fractional next-to-leading-order
correction to the linear power spectrum is given by σ 2

R=k−1 . This becomes of order unity
when k % kNL, where recall we have defined the nonlinear wavenumber kNL as the scale
where the dimensionless linear matter power spectrum is equal to 1 (Sect. 8.1.1). Fig. 12.4
confirms this estimate. Notice that the regime where perturbation theory is valid extends
to significantly smaller scales at redshift z = 1 compared to z = 0.

Another important effect of nonlinear evolution is that statistics involving an odd num-
ber of matter density fields no longer vanish. The leading example is the Fourier-space
three-point correlation function, or bispectrum, which is given by

〈δm(k1,η)δm(k2,η)δm(k3,η)〉 = (2π)3δ
(3)
D (k1 + k2 + k3)

×
[
2F2(k1,k2)PL(k1,η)PL(k2,η) + 2 perm.

]
. (12.51)



Bispectrum

• The bispectrum, or three-point function of 
δ0 vanishes, but not that of the evolved 
field δm, thanks to nonlinear evolution: 
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R ∼ 1/k [cf. Eq. (12.4)]. Perhaps you ask why we cut off the integral over p at the scale k. The
mathematical reason is that the perturbation-theory kernels in Eq. (12.48) are suppressed
when p $ k. The physical reason is that very small-scale perturbations to the matter den-
sity field do not influence the large-scale perturbations: the gravitational effect of a clump
of matter, far away from the clump, only depends on its total mass, and is independent of
how the mass is distributed within it. So, very roughly the fractional next-to-leading-order
correction to the linear power spectrum is given by σ 2

R=k−1 . This becomes of order unity
when k % kNL, where recall we have defined the nonlinear wavenumber kNL as the scale
where the dimensionless linear matter power spectrum is equal to 1 (Sect. 8.1.1). Fig. 12.4
confirms this estimate. Notice that the regime where perturbation theory is valid extends
to significantly smaller scales at redshift z = 1 compared to z = 0.

Another important effect of nonlinear evolution is that statistics involving an odd num-
ber of matter density fields no longer vanish. The leading example is the Fourier-space
three-point correlation function, or bispectrum, which is given by

〈δm(k1,η)δm(k2,η)δm(k3,η)〉 = (2π)3δ
(3)
D (k1 + k2 + k3)

×
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]
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At leading order; there are also “next-to-leading” (NLO) contributions - try
writing down the diagram for the leading three-point function as well as the NLO one!

Eq. (12.51)
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• So far, did well-defined perturbation theory, but of the wrong 
equation: collisionless matter is not a fluid

• Rather, the correct equation is the collisionless Boltzmann 
equation

• What is the error we are making?

• Recall that we neglected the velocity dispersion, or stress 
tensor σm, which adds force term to the Euler equation,

• What is the effect of the stress tensor? Can we incorporate it?
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derivatives with respect to t and x outside the momentum integral, to obtain

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
−

∫
d3p

(2π)3 m

[
Hpj + m

a

∂$

∂xj

]
∂

∂pj
fm(x,p, t) = 0,

(12.13)

where we have used that
〈
pj

〉
fm

= ρmu
j
m. The last term can be integrated by parts to move

the derivative with respect to pj from fm to the term in square brackets (the boundary
term vanishes, since any well-behaved distribution function does not have particles at in-
finite momentum). Evaluating this derivative, we obtain, first, −∂/∂pj (Hpj ) = −3H , while
∂/∂pj (∂$/∂xj ) = 0, since the potential $ is only a function of t and x. Thus, Eq. (12.13)
becomes

∂

∂t
ρm(x, t) + 1

a

∂

∂xj

[
ρm(x, t)u

j
m(x, t)

]
+ 3Hρm(x, t) = 0. (12.14)

Modulo an overall factor m, this is the continuity equation whose linear version is
Eq. (5.41), but now valid at fully nonlinear order (and on sub-horizon scales).

As in the linear case, Eq. (12.14) is not sufficient, since we need an equation for the
velocity ui

m as well. Let us thus take the first moment of the Vlasov equation (12.8), by
multiplying with pi and integrating over p:

∂

∂t

[
ρmui

m(x, t)
]
+ 1

ma

∂

∂xj

〈
pipj

〉

fm
−

∫
d3p

(2π)3 pi

[
Hpj + m

a

∂$

∂xj

]
∂

∂pj
fm(x,p, t) = 0.

(12.15)

The last term can again be dealt with by integration by parts, and we obtain

∂

∂t

[
ρmui

m(x, t)
]
+ 1

ma

∂

∂xj

〈
pipj

〉

fm
+ 4Hρmui

m(x, t) + 1
a
ρm(x, t)

∂$(x, t)

∂xi
= 0. (12.16)

This is our desired equation for ui
m, but we now encounter another quantity, the second

moment of the distribution
〈
pipj

〉
fm

. Let us write this as follows, introducing the stress ten-

sor σ
ij
m(x, t):

1
m

〈
pipj

〉

fm
= ρmui

mu
j
m + σ

ij
m . (12.17)

As with ui
m and pi , we do not need to distinguish between upper and lower latin indices on

σ
ij
m. At this point, this is nothing but a definition for σ

ij
m, but we will learn the significance

of this decomposition in a moment. Inserting this into Eq. (12.16), we obtain

∂

∂t

[
ρmui

m(x, t)
]
+ 1

a

∂

∂xj

[
ρmui

mu
j
m + σ

ij
m

]
+ 4Hρmui

m(x, t) + 1
a
ρm(x, t)

∂$(x, t)

∂xi
= 0.

(12.18)
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approximation

• Idea: treat stress tensor as effective 
quantity, and parametrize it, at the 
background and perturbation level:

• We can’t predict the coefficients             
from within the fluid picture - leave them 
free for now
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Beyond the fluid 
approximation

• Insert into Euler equation:

• Additional contribution is suppressed on large scales: 
two additional derivatives, ~k2 in Fourier space

• Hence, can take into account stress tensor at leading 
order by adding one term to equations, at the price of 
an unknown, free coefficient
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Beyond the fluid 
approximation

• Insert into Euler equation, take divergence again:

• Additional contribution is suppressed on large scales: 
two additional derivatives, ~k2 in Fourier space

• Hence, can take into account stress tensor at leading 
order by adding one term to equations, at the price of 
an unknown, free coefficient
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Beyond the fluid 
approximation

• Insert into Euler equation, take divergence again:

• Additional contribution is suppressed on large scales: 
two additional derivatives, ~k2 in Fourier space

• Hence, can take into account stress tensor at leading 
order by adding one term to equations, at the price of 
an unknown, free coefficient
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• At leading order, this is just another linear term in 
the equations (but with more derivatives)

• By redefining coefficient, correction to final density 
field can be written as (with free coefficient Cs2)

• In fact, theoretical consistency forces us to 
introduce Cs2 as counterterm:

Cold collisionless matter 
= effective fluid

29
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This again follows from inserting Eq. (12.40), and using Wick’s theorem Eq. (12.47) (Exer-
cise 12.6). Note that the bispectrum is a function of three wavenumbers, and is nonzero
only if these vectorially add up to zero, i.e. they form a closed triangle in Fourier space. The
amplitude of the bispectrum in Eq. (12.51) displays a specific dependence on the shape of
the triangle, which is characteristic of nonlinear gravitational evolution. Eq. (12.51) is only
the leading-order result valid on large scales, and perturbation theory allows us to similarly
calculate the next-to-leading order correction.

We now have all the tools we need to compute the statistics of the evolved matter den-
sity field in perturbation theory. However, before we move on, we should recall that, so far,
we have actually done perturbation theory of the wrong equation: we have treated matter
as an ideal fluid, whereas the real physical system is a collection of collisionless particles
governed by the Vlasov equation. In particular, we have neglected the stress tensor σ

ij
m in

Eq. (12.20). Fortunately, all is not lost: the solution is to treat matter as an effective fluid
(Baumann et al., 2012). In practice, this works by expanding σ

ij
m in terms of the matter den-

sity field itself. Since we cannot predict σ
ij
m from within perturbation theory, we have to

allow for free coefficients that must be determined by other means. The equation for um

involves only the gradient of σ
ij
m, so the homogeneous part of the stress tensor is irrelevant.

Hence, the leading relevant term is proportional to δm and is given by

σ
ij

m,eff(x,η) = δijρm(η) c2
s,eff(η)δm(x,η), (12.52)

where c2
s,eff is the effective sound speed squared. This notation makes sense: the diagonal

part of the stress tensor corresponds to the pressure, and the sound speed c2
s = ∂p/∂ρ re-

lates pressure perturbations to density perturbations. Note that this is not pressure in the
usual sense as in a gas of collisional atoms. Instead, it corresponds to the effective gravi-
tational action induced by small-scale perturbations. It is straightforward to integrate the
Euler–Poisson system with this pressure term included. At linear order, this yields

δ(1)(k,η) =
[
1 − C2

s (η)k2
]
D+(η)δ0(k), (12.53)

where C2
s (η) is a double time integral (weighted by the growth factor) over c2

s,eff. Notice how
the effective pressure contribution is suppressed at small k, just as the NLO contribution
we computed above. In fact, it is typically of similar order as the latter: on dimensional
grounds, we expect that C2

s ∼ 1/k2
NL, and simulation measurements confirm this. Thus, we

can take into account the non-ideal nature of the effective fluid, i.e. the error we are making
by approximating matter as a fluid, by performing an expansion of the stress tensor, with a
single term being sufficient at the level of the power spectrum at NLO. The coefficient C2

s (η)

cannot be predicted in perturbation theory. In order to determine it, we need to match to
a solution of the actual underlying Vlasov–Poisson system. N-body simulations provide a
means to achieve just that.
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FIGURE 12.3 Diagrammatic representation of the next-to-leading order contributions to the matter power spectrum:〈
δ(2)(k)δ(2)(k′)

〉
(left) and

〈
δ(1)(k)δ(3)(k′)

〉
(right); we again suppress the time arguments for clarity. The upper diagrams

show how these contributions can be calculated by connecting the linear density fields δ(1)(k1), · · · δ(1)(k4) appearing
in the expansion of each nonlinear density field via the dashed lines (the kernels are the same as in Fig. 12.2 and
are not labeled). By Wick’s theorem, each connection yields a linear matter power spectrum and a Dirac delta. The
lower diagrams introduce a more standard, and economical representation: now the connection of two linear fields
is represented with an open circle, with each circle corresponding to a linear power spectrum. This representation
makes it clear why these contributions are also called “1-loop” contributions. Each loop in a diagram corresponds to
one integral over wavenumber (in the lower diagrams, p denotes the loop wavenumber).

where

P (22)(k,η) = 2
∫

d3p

(2π)3

[
F2(p,k − p)

]2
PL(p,η)PL(|k − p|,η),

P (13)(k,η) = 3PL(k,η)

∫
d3p

(2π)3 F3(p,−p,k)PL(p,η). (12.49)

Here, we have relabeled the wavenumbers ki that are integrated over as p. Notice that we
have to go to third order to consistently derive the NLO correction to the matter power
spectrum. The result is shown in Fig. 12.4. We see that on large scales (small k), P NLO(k) is
much smaller than the linear power spectrum. That is, nonlinear evolution is only a small
correction to linear evolution. This is the regime where perturbation theory is useful, since
we expect that higher-order terms in the expansion Eq. (12.48) are even smaller.

In fact, we can make this argument more precise. Notice that, as depicted in the bottom
panel of Fig. 12.3, the NLO contributions in Eq. (12.49) both involve what in field theory
is called a loop, an integral over wavenumber (or “momentum”). Since the linear matter
power spectrum does not have a simple shape, this integral has to be performed numer-
ically. In order to identify the relevant parameter controlling the relative size of the NLO

;
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• At leading order, this is just another linear term in 
the equations (but with more derivatives)

• By redefining coefficient, correction to final density 
field can be written as (with free coefficient Cs2)

• In fact, theoretical consistency forces us to 
introduce Cs2 (~ eff. sound horizon) as counterterm:

Cold collisionless matter 
= effective fluid

30
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This again follows from inserting Eq. (12.40), and using Wick’s theorem Eq. (12.47) (Exer-
cise 12.6). Note that the bispectrum is a function of three wavenumbers, and is nonzero
only if these vectorially add up to zero, i.e. they form a closed triangle in Fourier space. The
amplitude of the bispectrum in Eq. (12.51) displays a specific dependence on the shape of
the triangle, which is characteristic of nonlinear gravitational evolution. Eq. (12.51) is only
the leading-order result valid on large scales, and perturbation theory allows us to similarly
calculate the next-to-leading order correction.

We now have all the tools we need to compute the statistics of the evolved matter den-
sity field in perturbation theory. However, before we move on, we should recall that, so far,
we have actually done perturbation theory of the wrong equation: we have treated matter
as an ideal fluid, whereas the real physical system is a collection of collisionless particles
governed by the Vlasov equation. In particular, we have neglected the stress tensor σ

ij
m in

Eq. (12.20). Fortunately, all is not lost: the solution is to treat matter as an effective fluid
(Baumann et al., 2012). In practice, this works by expanding σ

ij
m in terms of the matter den-

sity field itself. Since we cannot predict σ
ij
m from within perturbation theory, we have to

allow for free coefficients that must be determined by other means. The equation for um

involves only the gradient of σ
ij
m, so the homogeneous part of the stress tensor is irrelevant.

Hence, the leading relevant term is proportional to δm and is given by

σ
ij

m,eff(x,η) = δijρm(η) c2
s,eff(η)δm(x,η), (12.52)

where c2
s,eff is the effective sound speed squared. This notation makes sense: the diagonal

part of the stress tensor corresponds to the pressure, and the sound speed c2
s = ∂p/∂ρ re-

lates pressure perturbations to density perturbations. Note that this is not pressure in the
usual sense as in a gas of collisional atoms. Instead, it corresponds to the effective gravi-
tational action induced by small-scale perturbations. It is straightforward to integrate the
Euler–Poisson system with this pressure term included. At linear order, this yields

δ(1)(k,η) =
[
1 − C2

s (η)k2
]
D+(η)δ0(k), (12.53)

where C2
s (η) is a double time integral (weighted by the growth factor) over c2

s,eff. Notice how
the effective pressure contribution is suppressed at small k, just as the NLO contribution
we computed above. In fact, it is typically of similar order as the latter: on dimensional
grounds, we expect that C2

s ∼ 1/k2
NL, and simulation measurements confirm this. Thus, we

can take into account the non-ideal nature of the effective fluid, i.e. the error we are making
by approximating matter as a fluid, by performing an expansion of the stress tensor, with a
single term being sufficient at the level of the power spectrum at NLO. The coefficient C2

s (η)

cannot be predicted in perturbation theory. In order to determine it, we need to match to
a solution of the actual underlying Vlasov–Poisson system. N-body simulations provide a
means to achieve just that.
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FIGURE 12.3 Diagrammatic representation of the next-to-leading order contributions to the matter power spectrum:〈
δ(2)(k)δ(2)(k′)

〉
(left) and

〈
δ(1)(k)δ(3)(k′)

〉
(right); we again suppress the time arguments for clarity. The upper diagrams

show how these contributions can be calculated by connecting the linear density fields δ(1)(k1), · · · δ(1)(k4) appearing
in the expansion of each nonlinear density field via the dashed lines (the kernels are the same as in Fig. 12.2 and
are not labeled). By Wick’s theorem, each connection yields a linear matter power spectrum and a Dirac delta. The
lower diagrams introduce a more standard, and economical representation: now the connection of two linear fields
is represented with an open circle, with each circle corresponding to a linear power spectrum. This representation
makes it clear why these contributions are also called “1-loop” contributions. Each loop in a diagram corresponds to
one integral over wavenumber (in the lower diagrams, p denotes the loop wavenumber).

where

P (22)(k,η) = 2
∫

d3p

(2π)3

[
F2(p,k − p)

]2
PL(p,η)PL(|k − p|,η),

P (13)(k,η) = 3PL(k,η)

∫
d3p

(2π)3 F3(p,−p,k)PL(p,η). (12.49)

Here, we have relabeled the wavenumbers ki that are integrated over as p. Notice that we
have to go to third order to consistently derive the NLO correction to the matter power
spectrum. The result is shown in Fig. 12.4. We see that on large scales (small k), P NLO(k) is
much smaller than the linear power spectrum. That is, nonlinear evolution is only a small
correction to linear evolution. This is the regime where perturbation theory is useful, since
we expect that higher-order terms in the expansion Eq. (12.48) are even smaller.

In fact, we can make this argument more precise. Notice that, as depicted in the bottom
panel of Fig. 12.3, the NLO contributions in Eq. (12.49) both involve what in field theory
is called a loop, an integral over wavenumber (or “momentum”). Since the linear matter
power spectrum does not have a simple shape, this integral has to be performed numer-
ically. In order to identify the relevant parameter controlling the relative size of the NLO

;
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Yes, P22 also leads to a counterterm, but that one is much smaller.
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25
As

#2
m

D2
+(a)T 2(k)

kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at

• Idea: allow for all counterterms in effective fluid equations consistent 
with symmetries: general covariance; mass and momentum conservation

• Order different contribution according to their scaling with k

• Only one relevant scale: kNL, where (roughly) matter density field 
becomes fully nonlinear:

• For this ordering, we typically approximate PL(k) ~ kn as power law, with 
n ~ -1.5, allowing us to compute loop integrals analytically. E.g., 

Effective Field Theory of 
Structure Formation

31
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Non-gravitational 
interactions of baryons
• So far, completely ignored non-gravitational interactions, 

while I argued that we are including baryons…

• Let’s consider the effect of pressure then, assuming some 
relation p=p(ρ) (barotropic fluid). Pressure term in baryon 
Euler equation, at leading order:

• Precisely the same shape as effective stress contribution! 
As long as we are interested only in total matter, we can 
combine the two into a single Cs2.
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Alternative: Lagrangian approach 
to structure formation
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xfl(q, ⌘) = q + s(q, ⌘)

• So far, worked with Eulerian fields at fixed 
spatial position x

• Alternative: follow mass elements along their 
trajectory, labeling them with initial position q

• Time-dependent position given by

• Then use geodesic equations:
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Alternative: Lagrangian approach 
to structure formation
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xfl(q, ⌘) = q + s(q, ⌘)

• So far, worked with Eulerian fields at fixed 
spatial position x

• Alternative: follow mass elements along their 
trajectory, labeling them with initial position q

• Time-dependent position given by

• Then use geodesic equations:
<latexit sha1_base64="02oMw83RhhF2eqA8Ak0po7qDImI="></latexit>

s00(q, ⌘) + aHs0(q, ⌘) +rx (xfl(q, ⌘), ⌘) = 0



Alternative: Lagrangian approach 
to structure formation

• At initial time, density perturbations were negligible, so 
a given element d3q corresponds to equal mass 
everywhere. Hence, density is given directly by Jacobian:

• Can insert δm into Poisson equation to obtain Ψ. 
Perturbation theory then proceeds by writing

35

<latexit sha1_base64="Q8lzz1nGnKnk7UFhRmwgIkFsg3Q="></latexit>

⇢̄m(⌘)d
3q = ⇢m(x, ⌘)d

3x

) ⇢m
⇢̄m

= 1 + �m =

����
@q

@x

���� =
����
@x

@q

����
�1

= |�ij + @q,isj(q, ⌘)|

<latexit sha1_base64="kdAXb0u+qcp2Hqxl53G+8LcOs9I="></latexit>

s = s(1) + s(2) + . . .

and solving equation for displacement order by order.



Alternative: Lagrangian approach 
to structure formation

• Note: two matter elements can end up 
at the same final position x!

• Known as shell crossing

• Possible because (dark) matter is 
collisionless. 

• This cannot happen in the fluid picture 
though.

• In this sense, Lagrangian approach is 
closer to the correct physics.
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xfl(q, ⌘) = q + s(q, ⌘)



Phasespace view of 
structure formation

• Initial stages of 
collapse of 
overdense region
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with
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the coupling between ! and fm) of integro-differential equations (because δm is an integral
over the distribution function fm) in 6 + 1 dimensions, it is notoriously difficult to solve.
The following sections will deal with perturbative as well as numerical techniques to solve
it.

The perturbative approach proceeds as we have done in previous chapters: by taking
moments of the Boltzmann equation. In the linear regime that we studied so far, the dis-
tribution function fm was completely described by its zeroth (density) and first moments
(velocity). Physically, this means that the second moment, the velocity dispersion, is van-
ishingly small. Then the distribution function can be written as

fm(x,p, t) = ρm(x, t)

m
(2π)3δ

(3)
D (p − mum(x, t)) (no velocity dispersion), (12.9)

where we have absorbed the irrelevant degeneracy factors of CDM and baryon species into
fm. You can think of this as arising from a thermal velocity distribution at each point cen-
tered around um(x, t) when taking the limit of zero temperature. It is important to realize,
however, that the form of the distribution function Eq. (12.9) does not remain valid once
structure becomes nonlinear. We will study in more detail how this happens in Sect. 12.3.
First though, let us see how far we get with the ansatz of vanishing velocity dispersion.

12.2 Perturbation theory
The starting point of perturbative approaches to the nonlinear growth of structure is to
take moments of the Vlasov equation; that is, we follow the same basic approach we took
in Ch. 5. For any function A(x,p, t) defined on 6 + 1 dimensional phase space, we can
define the momentum average

〈A〉fm (x, t) ≡
∫

d3p

(2π)3 A(x,p, t)fm(x,p, t), (12.10)

which now is only a function of position and time. Again, we absorb any degeneracy factors
into fm; there are no collision terms where they could become relevant. Choosing A = 1
then simply gives us the number density:

〈1〉fm (x, t) = n(x, t) = ρm(x, t)

m
. (12.11)

Equivalently, 〈m〉fm yields the mass density ρm(x, t), which is more useful in practice. Sim-
ilarly, we define the bulk or fluid velocity as the momentum average of pi , normalized by
the density:

ui
m(x, t) ≡

〈
pi

〉
fm

〈m〉fm

. (12.12)

Let us now take the momentum average
∫

d3p/(2π)3 of the Vlasov equation (12.8), multi-
plied by m, thus taking the zeroth moment of the Vlasov equation. We can always pull out

<=> no velocity dispersion
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with



Phasespace view of 
structure formation

• Later stages of 
collapse of 
overdense region
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with



Structure formation beyond 
perturbation theory

• In order to take this phasespace evolution 
into account properly, need to go beyond 
fluid picture and perturbation theory.

• Back to collisionless Boltzmann equation!

• Topic of lecture 3.
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