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Outline of lectures
1. The problem: collisionless Boltzmann equation and fluid approximation

1. Linear evolution

2. Nonlinear evolution of matter

1. Perturbation theory

2. Simulations

3. Phenomenology of nonlinear matter distribution

3. Formation and distribution of galaxies

1. Galaxy formation in a nutshell

2. Spherical collapse model

3. Physical clustering of halos and galaxies; bias

4. Observed clustering of galaxies

4. Beyond ΛCDM
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Notation

• Comoving coordinates:

• Conformal time:

• Comoving distance:

• Particle velocity/momentum:

• Fluid velocity; divergence:

• Gravitational potential:

D
Symbols

D.1 Mathematical and geometrical definitions

Symbol Explanation

ḟ (x, t) ≡ ∂f (x, t)/∂t Partial derivative with respect to time
f ′(x,η) ≡ ∂f (x,η)/∂η Derivative with respect to conformal time
φ,α ≡ ∂φ(x)/∂xα Partial derivative with respect to coordinate xα

δν
α , δij Kronecker symbol

δ
(n)
D (k − k) Dirac-delta distribution in n dimensions

êx,y,z Unit vector in direction of three spatial Cartesian axes
n̂ 3D unit vector (full-sky position)
θ 2D Euclidean vector (flat-sky position)
d' Solid angle integration measure

Throughout, spatial indices ijk . . . are raised and lowered with δij .

D.2 Frequently used relations
Frequently used time integration measures are

dη = dt

a(t)
= da

a2H(a)
= d lna

aH(a)
. (D.1)

For light rays, we further have

dχ = −dη = dz

H(z)
. (D.2)

Our convention for the perturbed FLRW metric is (Eq. (3.49))

g00(x, t) = −1 − 2)(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2*(x, t)] . (D.3)
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Notation
• The linear power spectrum (filling in a gap in 

Lecture 1)

• Almost-scale-invariant power spectrum 
from inflation:

• Relating δ to curvature perturbation:

• Result:
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25
As

#2
m

D2
+(a)T 2(k)

kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at
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field rolls down a potential well during inflation, so that the Hubble rate slowly decreases,
a further generic prediction is that the potential is slightly red-tilted, with larger-scale per-
turbations, those which left the horizon earlier, having a slightly larger amplitude than
smaller-scale perturbations. A spectrum with a small red tilt has indeed been conclusively
detected in the CMB.

The scalar perturbations generated during inflation are nowadays most commonly
parametrized in terms of the power spectrum of the gauge-invariant curvature perturba-
tion R. This has the great advantage of being conserved on super-horizon scales, regardless
of whether matter or radiation dominates, and is thus a good unambiguous anchoring
point. From Eq. (7.78), we have

PR(k) = 2π

k3

H 2

m2
Plεsr

∣∣∣∣∣
aH=k

≡ 2π2Ask
−3

(
k

kp

)ns−1

, (7.99)

where As is the variance of curvature perturbations in a logarithmic wavenumber interval
centered around the pivot scale kp, and ns is the scalar spectral index. The pivot scale is a
matter of convention, and is often determined as the scale best constrained by a given set
of observations (say, CMB anisotropies; the Planck team adopts kp = 0.05 Mpc−1, and we
do so as well). In our fiducial cosmology,

As =
k3

p

2π2 PR(kp) # 2.1 × 10−9. (7.100)

Thus, the typical amplitude of curvature perturbations on the scale kp is
√

As # 4.6 × 10−5,
which is of similar order of magnitude as (but a bit larger than) the temperature fluctua-
tions in the CMB. We will see in Ch. 9 that this is no coincidence.

For tensor modes, we derived the power spectrum of a single polarization Ph in
Eq. (7.42). Primordial tensor modes are conventionally parametrized via their total power
spectrum PT(k) (outside the horizon) defined via

〈
hTT

ij (k)
(
hTT

ij

)∗
(k′)

〉∣∣∣
η=0

≡ (2π)3δ
(3)
D (k − k′)PT(k). (7.101)

Performing the index summation via Eq. (6.49), the left-hand side evaluates to 2〈h+h∗
+〉 +

2〈h×h∗
×〉, so we have

PT(k) = 4Ph(k) = 32π

k3

H 2

m2
Pl

∣∣∣∣∣
aH=k

≡ 2π2ATk−3
(

k

kp

)nT

, (7.102)

which serves to define the conventional tensor amplitude AT and spectral index nT. Note
that this convention—which has become common—says that a scale-free scalar spectrum
corresponds to ns = 1, while for the tensor modes the same statement is nT = 0. In practice,
AT is often replaced with the tensor-to-scalar ratio r,

r(k) ≡ PT(k)

PR(k)

k=kp= AT

As
. (7.103)
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3

5
T (k)

D(a)

a
R(k)
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Note: throughout, δ is in synchronous-comoving gauge. Then 
this relation remains valid on all scales.
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
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R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is
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m
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H 4
0 k
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Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at
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field rolls down a potential well during inflation, so that the Hubble rate slowly decreases,
a further generic prediction is that the potential is slightly red-tilted, with larger-scale per-
turbations, those which left the horizon earlier, having a slightly larger amplitude than
smaller-scale perturbations. A spectrum with a small red tilt has indeed been conclusively
detected in the CMB.

The scalar perturbations generated during inflation are nowadays most commonly
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2
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kns
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. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at
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field rolls down a potential well during inflation, so that the Hubble rate slowly decreases,
a further generic prediction is that the potential is slightly red-tilted, with larger-scale per-
turbations, those which left the horizon earlier, having a slightly larger amplitude than
smaller-scale perturbations. A spectrum with a small red tilt has indeed been conclusively
detected in the CMB.

The scalar perturbations generated during inflation are nowadays most commonly
parametrized in terms of the power spectrum of the gauge-invariant curvature perturba-
tion R. This has the great advantage of being conserved on super-horizon scales, regardless
of whether matter or radiation dominates, and is thus a good unambiguous anchoring
point. From Eq. (7.78), we have

PR(k) = 2π

k3

H 2

m2
Plεsr

∣∣∣∣∣
aH=k

≡ 2π2Ask
−3

(
k

kp

)ns−1

, (7.99)

where As is the variance of curvature perturbations in a logarithmic wavenumber interval
centered around the pivot scale kp, and ns is the scalar spectral index. The pivot scale is a
matter of convention, and is often determined as the scale best constrained by a given set
of observations (say, CMB anisotropies; the Planck team adopts kp = 0.05 Mpc−1, and we
do so as well). In our fiducial cosmology,

As =
k3

p

2π2 PR(kp) # 2.1 × 10−9. (7.100)

Thus, the typical amplitude of curvature perturbations on the scale kp is
√

As # 4.6 × 10−5,
which is of similar order of magnitude as (but a bit larger than) the temperature fluctua-
tions in the CMB. We will see in Ch. 9 that this is no coincidence.

For tensor modes, we derived the power spectrum of a single polarization Ph in
Eq. (7.42). Primordial tensor modes are conventionally parametrized via their total power
spectrum PT(k) (outside the horizon) defined via

〈
hTT

ij (k)
(
hTT

ij

)∗
(k′)

〉∣∣∣
η=0

≡ (2π)3δ
(3)
D (k − k′)PT(k). (7.101)

Performing the index summation via Eq. (6.49), the left-hand side evaluates to 2〈h+h∗
+〉 +

2〈h×h∗
×〉, so we have

PT(k) = 4Ph(k) = 32π

k3

H 2

m2
Pl

∣∣∣∣∣
aH=k

≡ 2π2ATk−3
(

k

kp

)nT

, (7.102)

which serves to define the conventional tensor amplitude AT and spectral index nT. Note
that this convention—which has become common—says that a scale-free scalar spectrum
corresponds to ns = 1, while for the tensor modes the same statement is nT = 0. In practice,
AT is often replaced with the tensor-to-scalar ratio r,

r(k) ≡ PT(k)

PR(k)

k=kp= AT

As
. (7.103)

<latexit sha1_base64="O+6QazbZy4i0sS/gV8g8lchYxMk=">AAAI5nichZXdbts2GIbV7qde9pduO9uJsCBAB7iGnDlrDrah6IIlB/biFHFTIHINiqItwRSpUJRjj+At7GzYaU+3S9id7G5G6sdmyA0TYJn6npcfP5EvqSjHacGD4O8HD9959733H3U+2Pvwo48/+XT/8WevCloyiCaQYspeR6BAOCVowlOO0eucIZBFGF1Hyx81v14hVqSUXPFNjqYZWJB0nkLAVWi2/8V4JsIM8AQCLF5K+WT5tf/9bP8g6AXV5buNftM48JprPHv86K8wprDMEOEQg6K46Qc5nwrAeAoxknthWaAcwCVYoBvVJCBDxVRU5Uv/UEVif06Z+hHuV1GzhwBZUWyySCl1pYXNdLAbZf+Gb0o+P5mKlOQlRwTWY81L7HPq6+nw45QhyPFGNQBkqSrXhwlgAHI1aXuHfklSrjLGaB4mWQ5F2E3eiKd9GXZFyDJ/lEMpW1yUxOAjNbE0pnzHm/5G10qqOEF3kGYZILEIVTyR/zGOqUu3wv9LqOq6l9GszBR+p0QYkEW1YAyZ6AeFWItMwBIaKUaVx7QFq4CcZZbqIpP6hhbARdEWRTYablE4VJaOgZOWbBUiC+z3uYgMHLl4aOBmAC069IcgxwAin+aIAa7NqBcQq6gICYgweHMkd7Hito0OmmhqSsXTI6l856dE70PUJt+rpSMlHM1CjtZcjHHrlfVcdV+tm/hcx+0VuZC7fXthv9rEgBMbniJs4FMbXxnwyoaXBrx0jGbAkQ3huUHPbXpmwDPp2G9s4LGLhwYe6rk69FdqV1O1gy3lSt70pyKMMnHg7JMVkhVBDljWYOmAvAa5A25rcOsAVgPmgLIGpQPuanDngHUN1g7Y1GDTumlFEsBFWN1WgshdXOkojvXZSlu/tnBOsJg3Bvy5mdQFQ2hpmUlWhuL21ixUvEgXGXAWK1YkbnrcJ0ARgPPEJVQfMXqjWqOgXI+zAkw1UkxJVWX1/ajPbHUiVU/iJYqv1YMUbKHOm6D3bTfoBtLS0A3AL3C5Ux0dd3uDfrd3cmJJf6IMFfxMTQdpxL3+N93e8aCr/i3tKUL5uGQ5bvP2Biqtyvrs2FIO00XCGYq34580VZqvHOkCKxPrpXEqd22tE9r6djYqtfra9+1vu9t4ddTrH/eCy8HB8xfNd7/jfel95T3x+t4z77l37o29iQe9X7y33h/en52k82vnt87vtfThg6bP5969q/P2H6RVQrI=</latexit>

PR(k) =

<latexit sha1_base64="ypASK4W5657xQmUwgEL8jKw5DCg="></latexit>

�
(1)(k, ⌘) =

2k2a(⌘)

3⌦mH
2
0

�(k, ⌘); �(k, ⌘) =
3

5
T (k)

D(a)

a
R(k)

<latexit sha1_base64="2bkV+R9jyL3ejdyHmvR8omPCiw8="></latexit>

(D+ ⌘ D)

Transfer function: evolution of 
perturbations in early Universe



Notation
• The linear power spectrum (filling in a gap in 

Lecture 1)

• Almost-scale-invariant power spectrum 
from inflation:

• Relating δ to curvature perturbation:

• Result:
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FIGURE 8.3 The linear matter power spectrum in the fiducial !CDM cosmology at different redshifts. Scales to the
left of the vertical lines, which indicate kNL(z) for each of the redshifts shown, are still evolving approximately
linearly at each redshift.

This, together with Eq. (8.4), allows us to relate the overdensity in the late universe to the
primordial potential:

δm(k, a) = 2
5

k2

#mH 2
0

R(k)T (k)D+(a) (a > alate, k ! aH). (8.7)

Eq. (8.7) holds regardless of how the initial perturbation R was generated, as long as it is
an adiabatic perturbation. In the context of inflation, we saw in the previous chapter that
R(k) is drawn from a Gaussian distribution with mean zero and power spectrum PR(k) =
(2π2/k3)As(k/kp)ns−1 (Eq. (7.99)). So the linear power spectrum of matter at late times is

PL(k, a) = 8π2

25
As

#2
m

D2
+(a)T 2(k)

kns

H 4
0 k

ns−1
p

. (8.8)

Notice that (i) the power spectrum has dimensions of (length)3; and (ii) Eq. (8.8) implies
that PL(k) ∝ kns on large scales where T (k) = 1.

Fig. 8.3 shows the matter power spectrum for our fiducial !CDM cosmology, today as
well as at higher redshifts. While on large scales we see the expected behavior, on small
scales the power spectrum turns over. To understand this, look back at Fig. 8.1. The small-
scale mode there (k = 2h Mpc−1) enters the horizon well before matter/radiation equality.
During the radiation epoch the potential decays, so the transfer function is much smaller
than unity. The effect of this on matter perturbations can be seen in Fig. 8.2, where the
growth of δ is retarded starting at a $ 10−5 after the mode has entered the horizon and
ending at a $ 10−4 when the universe becomes matter dominated. Modes that enter the
horizon even earlier undergo more suppression. Thus, the power spectrum is a decreasing
function of k on small scales. This leads to the realization that there will be a turnover in
the power spectrum at a scale keq corresponding to the one which enters the horizon at
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field rolls down a potential well during inflation, so that the Hubble rate slowly decreases,
a further generic prediction is that the potential is slightly red-tilted, with larger-scale per-
turbations, those which left the horizon earlier, having a slightly larger amplitude than
smaller-scale perturbations. A spectrum with a small red tilt has indeed been conclusively
detected in the CMB.

The scalar perturbations generated during inflation are nowadays most commonly
parametrized in terms of the power spectrum of the gauge-invariant curvature perturba-
tion R. This has the great advantage of being conserved on super-horizon scales, regardless
of whether matter or radiation dominates, and is thus a good unambiguous anchoring
point. From Eq. (7.78), we have

PR(k) = 2π

k3

H 2

m2
Plεsr

∣∣∣∣∣
aH=k

≡ 2π2Ask
−3

(
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kp

)ns−1

, (7.99)

where As is the variance of curvature perturbations in a logarithmic wavenumber interval
centered around the pivot scale kp, and ns is the scalar spectral index. The pivot scale is a
matter of convention, and is often determined as the scale best constrained by a given set
of observations (say, CMB anisotropies; the Planck team adopts kp = 0.05 Mpc−1, and we
do so as well). In our fiducial cosmology,

As =
k3

p

2π2 PR(kp) # 2.1 × 10−9. (7.100)

Thus, the typical amplitude of curvature perturbations on the scale kp is
√

As # 4.6 × 10−5,
which is of similar order of magnitude as (but a bit larger than) the temperature fluctua-
tions in the CMB. We will see in Ch. 9 that this is no coincidence.

For tensor modes, we derived the power spectrum of a single polarization Ph in
Eq. (7.42). Primordial tensor modes are conventionally parametrized via their total power
spectrum PT(k) (outside the horizon) defined via
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η=0

≡ (2π)3δ
(3)
D (k − k′)PT(k). (7.101)

Performing the index summation via Eq. (6.49), the left-hand side evaluates to 2〈h+h∗
+〉 +

2〈h×h∗
×〉, so we have

PT(k) = 4Ph(k) = 32π

k3

H 2

m2
Pl

∣∣∣∣∣
aH=k

≡ 2π2ATk−3
(

k

kp

)nT

, (7.102)

which serves to define the conventional tensor amplitude AT and spectral index nT. Note
that this convention—which has become common—says that a scale-free scalar spectrum
corresponds to ns = 1, while for the tensor modes the same statement is nT = 0. In practice,
AT is often replaced with the tensor-to-scalar ratio r,

r(k) ≡ PT(k)

PR(k)

k=kp= AT

As
. (7.103)
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Time dependence of linear P(k) ~ D2, 
as we showed in L. 1
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FIGURE 12.5 Illustration of collapse at early times, where the velocity distribution is single-valued (left), and late
times, in the multistreaming regime where fm(x,v, t) has several peaks (right). The dynamics in the stage illustrated
on the left can be described by an effective fluid, the ones on the right cannot. Upper panels: sketch of the config-
uration in real space. Middle panels: velocity distributions at the location of the dashed circles in the corresponding
upper panel. Lower panels: phase-space distribution of matter. The distribution remains localized in a thin sheet.
The vertical lines in each case indicate the location for which the velocity distribution is shown in the middle panels.

12.3 Simulations
In the previous section, we described how taking moments of the Vlasov equation leads
to fluid equations for collisionless matter, which we were then able to solve perturbatively.
However, the fluid equations do not correctly describe the evolution of nonlinear structure
on small scales. We already mentioned this above, but let us study the issue in a bit more
detail. Consider an overdense region that collapses under its own gravity (Fig. 12.5). Ini-
tially, the velocity of matter at the outer edge is single-valued (left middle panel). Eventually
however, this shell encounters a shell that started at a smaller initial radius and already had
time to pass through the origin; since dark matter is collisionless, a shell passes through
the origin unimpeded. Thus, at the instant and location highlighted in the right panels,
commonly called shell crossing, the velocity distribution now has two peaks (right middle
panel), one corresponding to an infalling velocity from the outer shell, and another with

Structure formation beyond 
perturbation theory

• In order to take phasespace evolution into 
account properly, need to go beyond fluid 
picture and perturbation theory.

• Back to collisionless Boltzmann equation!

• Instead of trying to calculate 6D 
distribution function, we will discretize the 
thin phasespace sheet that (dark) matter is 
localized in

8



N-body simulations

• Discretize the thin phasespace sheet that 
(dark) matter is localized in

• Follow the evolution of phasespace elements 
(“particles”) by integrating the geodesic 
equation (characteristics of the PDE) 

9

 21

vel

pos

Solving Vlassov-Poisson via a Montecarlo 
sampling and coarse-graining
The “method of characteristics” is used to solve the 
Vlassov-Poisson partial di7erential equation.

The solution yields the equation of motions
of the Hamiltonian of classical mechanics

This is the correct solution as N goes to infnity

N-body simulation particle

Credit: Raul Angulo



N-body simulations
• Discretize the thin phasespace sheet that (dark) 

matter is localized in

• Follow the evolution of phasespace elements 
(“particles”) by integrating the geodesic 
equation (characteristics of the PDE) 

• Equations of motion:

10
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close to zero velocity from the inner shell. That is, for the location and time shown in the
right panels, the outer shell is still on its first infall, while the inner shell has just reached
vx = 0 and is about to recollapse.

In the fluid treatment, on the other hand, two clouds of mass cannot pass through each
other; instead, the pressure forces ultimately become important and the fluid would pro-
duce a shock. Mathematically, a fluid always has a single well-defined velocity u(x, t) at any
given point in space and time, so cannot describe the multivalued velocity (i.e. distribution
function with several peaks) during shell crossing. This difference is explained by the fact
that, in the fluid description, we have neglected the contribution from the stress tensor σ

ij
m

as well as higher moments of the distribution function fm. On small scales, where shell
crossing happens,4 all moments of the distribution function become important.

What other means do we have to follow the evolution of collisionless matter? Let us go
back to the Vlasov–Poisson system of Eq. (12.8):

∂fm

∂t
+ ∂fm

∂xj

pj

ma
− ∂fm

∂pj

[
Hpj + m

a

∂#

∂xj

]
= 0,

∇2# = 4πGa2
[∫

d3p

(2π)3 fm(x,p, t) − ρm(t)

]
. (12.54)

Our goal is to solve for fm, starting from cold initial conditions as given in Eq. (12.9):

fm(x,p, t)
t→0−→ ρm

m
[1 + δm(x, t)] (2π)3δ

(3)
D (p − mum(x, t)) . (12.55)

This initial condition states that matter occupies a thin sheet in phase space, with a unique
single-valued velocity um(x, t) at each point in space. As fm evolves under gravity, the
velocity will no longer remain single-valued, as explained above, but matter will remain
confined to a thin sheet in phase space, a consequence of the preservation of phase-space
volume discussed in Sect. 3.2.1 (see the lower panels in Fig. 12.5). Whenever two clouds of
matter pass through each other in physical space, this corresponds to a wrapping of the
phase-space sheet.

N-body simulations proceed by discretizing this phase-space sheet and following its
evolution numerically. A small element of the sheet has a well-defined position x and mo-
mentum p. Since the motion of dark matter particles in this small region of phase space
is described by the geodesic equation, so is that of the element of the phase-space sheet
itself:

dxi

dt
= pi

ma
,

dpi

dt
= −Hpi − m

a

∂#

∂xi
. (12.56)

4
The typical distance that a massive particle travels during the age of the universe is of order 10h−1 Mpc (see

also Exercise 11.3), so we are safe from shell crossing on scales larger than this.
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Mathematically, the non-relativistic geodesics are the characteristics of the collisionless
Boltzmann equation. When integrating these equations numerically, it is convenient to
use the “superconformal” momentum pc ≡ ap. With this, the geodesic equation becomes

dxi

dt
= pi

c

ma2 ,

dpi
c

dt
= −m

∂"

∂xi
. (12.57)

The advantage of pc is that it is conserved in the absence of perturbations, i.e. when the
gradient of " vanishes. Note that the coordinates x are comoving and thus include the
Hubble expansion. Practitioners usually refer to the elements of the discretized phase-
space sheet as “particles” for simplicity, and we will do so in the following as well. However,
it is important to keep in mind that these do not stand for actual dark matter particles.
Rather, they represent small elements of the dark matter distribution in phase space, which
forms a thin sheet due to the cold nature of dark matter. For this reason, the mass m of the
particles (which we assume here is the same for all particles) is only a numerical param-
eter: it is determined by the total amount of matter in the simulation volume divided by
the number of particles, so a higher-resolution simulation has more particles with corre-
spondingly smaller m.

The basic sequence of an N-body simulation then proceeds as follows. Here, we de-
scribe the so-called leapfrog scheme where density and velocity are given at staggered
times. So, we start with particle positions and velocities

x(i)(t) and p(i)
c (t − #t/2), (12.58)

where #t is the timestep and the superscript denotes the index of the particle. Typical
simulations can have a billion particles or more, a number that is steadily growing with
Moore’s Law. We then

1. Compute the gravitational potential generated by the collection of particles, and take
its gradient to obtain ∇"(x, t) (see text below).

2. Change each particle’s momentum (“kick”) by

p(i)
c (t + #t/2) = p(i)

c (t − #t/2) − m∇"(x(i), t)#t. (12.59)

3. Move each particle position (“drift”) by

x(i)(t + #t) = x(i)(t) + p(i)
c (t + #t/2)

ma2(t + #t/2)
#t. (12.60)

4. Repeat.

Notice that particle positions and momenta are offset by half a time step. This scheme
ensures that the energy of each particle is conserved to high accuracy (the numerical error

Eq. (12.57)
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)

and



N-body simulations in       
one step

• Structure appears after just one time step!

• Specifically, solve for particle displacement at linear order: 1st order Lagrangian 
perturbation theory (Zel’dovich approximation)

• Technique used to generate initial conditions for full simulations at high z

11

  

Initial Conditions
The Zeldovich Approximation predicts triaxial collapse and
The appearance of halos, <laments, walls, and voids

  

Initial Conditions
The Zoldivich Approximation predicts triaxial collapse and
The appearance of halos, <laments, walls, and voids

Credit: Raul Angulo



Time integration
• Leapfrog scheme: preserves energy (as well as 

other constants of motion) to cubic order in time 
step

12
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Mathematically, the non-relativistic geodesics are the characteristics of the collisionless
Boltzmann equation. When integrating these equations numerically, it is convenient to
use the “superconformal” momentum pc ≡ ap. With this, the geodesic equation becomes

dxi

dt
= pi

c

ma2 ,

dpi
c

dt
= −m

∂"

∂xi
. (12.57)

The advantage of pc is that it is conserved in the absence of perturbations, i.e. when the
gradient of " vanishes. Note that the coordinates x are comoving and thus include the
Hubble expansion. Practitioners usually refer to the elements of the discretized phase-
space sheet as “particles” for simplicity, and we will do so in the following as well. However,
it is important to keep in mind that these do not stand for actual dark matter particles.
Rather, they represent small elements of the dark matter distribution in phase space, which
forms a thin sheet due to the cold nature of dark matter. For this reason, the mass m of the
particles (which we assume here is the same for all particles) is only a numerical param-
eter: it is determined by the total amount of matter in the simulation volume divided by
the number of particles, so a higher-resolution simulation has more particles with corre-
spondingly smaller m.

The basic sequence of an N-body simulation then proceeds as follows. Here, we de-
scribe the so-called leapfrog scheme where density and velocity are given at staggered
times. So, we start with particle positions and velocities

x(i)(t) and p(i)
c (t − #t/2), (12.58)

where #t is the timestep and the superscript denotes the index of the particle. Typical
simulations can have a billion particles or more, a number that is steadily growing with
Moore’s Law. We then

1. Compute the gravitational potential generated by the collection of particles, and take
its gradient to obtain ∇"(x, t) (see text below).

2. Change each particle’s momentum (“kick”) by

p(i)
c (t + #t/2) = p(i)

c (t − #t/2) − m∇"(x(i), t)#t. (12.59)

3. Move each particle position (“drift”) by

x(i)(t + #t) = x(i)(t) + p(i)
c (t + #t/2)

ma2(t + #t/2)
#t. (12.60)

4. Repeat.

Notice that particle positions and momenta are offset by half a time step. This scheme
ensures that the energy of each particle is conserved to high accuracy (the numerical error

  

A leapfrog scheme preserves the 
simplicity of <rst-order time-integrators

Time-stepping

Advantages:
- Time-reversible
- Conserves angular momentum exactly (not energy though)
in a spherically symmetric potential.
- Symplectic (preserves phase-space volume)

Position:
(Drift)

Velocity:
(Kick) Credit: Raul Angulo



Solving for the force

• In order to move particles, we need to calculate the force 
(gradient of the potential) at each particle’s position

• As accurately as possible, but with reasonable cost

• Example: could directly sum up forces of all other 
particles (direct summation or particle-particle algorithm)

• Problem: computational cost scales as N2 for N particles

• Our goal is to use billions of particles, so algorithm has to 
scale as N or N log N at most.
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Reminder: N-body particles are not actual particles!
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Figure 3.2: The Cloud-in-Cell (CIC) mass assignment scheme in one (left panel) and two (right panel)
dimensions. For a particle at location x, one determines the left grid cell i as well as the overlap of the
particle assuming a size �x with cell i and the neighbour i + 1. In more than one dimension, one has
to repeat this procedure for each dimension ending up with 2

d intersections.

Repeating this assignment for all particles yields an estimate of the density �eld which allows evaluation
of eq. 3.23. Important: In order for a mass assignment scheme to be consistent, one has to use the
same scheme for mass assignment and back-interpolation of the forceF, i.e. once we haveF, we simply
look up the value from cell (i, j, k) for the particle at (x, y, z) according to eq. 3.24. Note that the force
changes discontinuously for NGP assignment as a particle moves through the grid.

At the next higher order, one can use multi-linear interpolation, which is called Cloud-in-Cell (CIC)
interpolation in the context of mass/charge interpolation methods. Instead of assigning all mass to a
single cell, one calculates the overlap of a particle of hypothetical size �x in each dimension with the
2
d cells it can intersect in d dimensions. The procedure is illustrated in Figure 3.2. The left intersection

with cell i shall be called d, the one with the right neighbour i + 1 shall be called t. A fraction of the
mass mpd is assigned to cell i, and the remainder mpt = mp(1� d) to cell i + 1. In three dimensions,
the respective assignments become e.g.

(i, j, k)  mpdxdydz (3.25)
(i + 1, j, k)  mptxdydz

(i, j + 1, k)  mpdxtydz

. . .

where the factor for the left cell is always the d and the one for the right the t, in total contributing
to eight cells. In the reverse interpolation, the values of the force in the eight cells are summed with
weights given by the products of t’s and d

0
s on the right hand side. For the CIC assignment, the force

changes linearly as the particle moves through the grid.

In principle one can go to arbitrarily higher order interpolation. The next higher order is called Triangular-
shaped-clouds (TSC) and it corresponds to quadratic multi-dimensional interpolation. It is rare that
schemes with higher order than TSC are used in computational cosmology.
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Solving for the force

• Simplest solution: solve potential on a fixed 
grid: particle-mesh (PM) algorithm

1. Assign particles to grid to obtain density (most 
commonly using cloud-in-cell [CIC] assignment)

2. Solve Poisson equation on grid, via discrete Fast 
Fourier Transform (FFT)

3. Interpolate gradient of resulting potential to 
each particle’s position (using same 
interpolation scheme)

• Cost: N log N due to FFT

14
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three equations to solve:

δm
′ + ∂

∂xj

[
(1 + δm)u

j
m

]
= 0,

ui
m

′ + u
j
m

∂

∂xj
ui

m + aHui
m + ∂#

∂xi
= 0,

∇2# = 3
2
$m(η)(aH)2δm. (12.23)

In the last line, we have used the definition of the time-dependent density parameter $m(η)

to replace 4πGρm with (3/2)$m(η)H 2(η). $m(η) is to be distinguished from our convention
$m = $m(η0) up to now. We will use $m(η) only in this section, since it is very convenient,
and revert back to the $m = $m(η0) convention after; bear in mind, however, that the use
of a time-dependent $m is quite common in the literature.

We have thus reduced the 6 + 1-dimensional Vlasov–Poisson system of integro-diffe-
rential equations into the Euler–Poisson system of coupled partial differential equations
in 3 + 1 dimensions—a significant simplification! Next, let us introduce the velocity diver-
gence θm ≡ ∂iu

i
m, and take the divergence of the Euler equation. Further, let us move those

terms that are nonlinear in the variables we wish to solve for to the right-hand side:

δm
′ + θm = −δmθm − u

j
m

∂

∂xj
δm,

θm
′ + aHθm + ∇2# = −u

j
m

∂

∂xj
θm − (∂iu

j
m)(∂j u

i
m). (12.24)

Unfortunately, this is still a coupled system of nonlinear partial differential equations
which in general cannot be solved in any closed form. However, we will see that the sim-
plicity of the matter-dominated universe allows us to make progress in an approximate
way.

If we set the right-hand sides of the continuity and Euler equations to zero, we recover
the linear set of equations we solved to obtain the growth factor in Sect. 8.5. That is, the
solution for the density was simply proportional to the initial density field, with a time-
dependent proportionality constant which we called the growth factor D+(η):

δm(x,η) = δ(1)(x,η) ≡ D+(η)δ0(x), (12.25)

where δ0(x) = δm(x,ηref)/D+(ηref) is the scaled density field at some arbitrary, but fixed
reference epoch ηref. The linear continuity equation yields

θ (1)(x,η) = −δ(1)′(x,η) = −aHf (η)δ(1)(x,η), (12.26)

where f = d lnD+/d lna is the growth rate we introduced in Sect. 8.5. You might have no-
ticed a subtle assumption we have made in going from Eq. (12.23) to Eq. (12.24): by taking
the divergence of the Euler equation, we have neglected the curl part of the velocity, or
vorticity, ωm = ∇ × um. As we have seen in Ch. 8, the growing-mode solution Eq. (12.25)



The resolution problem
• Issue: fixed grid means fixed resolution

• Cannot resolve small-scale structure below grid 
resolution, and increasing resolution is memory- and 
CPU-intensive (~Ngrid3)

• On the other hand, we don’t need high resolution for a 
large fraction of the volume
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Figure 3.2: The Cloud-in-Cell (CIC) mass assignment scheme in one (left panel) and two (right panel)
dimensions. For a particle at location x, one determines the left grid cell i as well as the overlap of the
particle assuming a size �x with cell i and the neighbour i + 1. In more than one dimension, one has
to repeat this procedure for each dimension ending up with 2

d intersections.

Repeating this assignment for all particles yields an estimate of the density �eld which allows evaluation
of eq. 3.23. Important: In order for a mass assignment scheme to be consistent, one has to use the
same scheme for mass assignment and back-interpolation of the forceF, i.e. once we haveF, we simply
look up the value from cell (i, j, k) for the particle at (x, y, z) according to eq. 3.24. Note that the force
changes discontinuously for NGP assignment as a particle moves through the grid.

At the next higher order, one can use multi-linear interpolation, which is called Cloud-in-Cell (CIC)
interpolation in the context of mass/charge interpolation methods. Instead of assigning all mass to a
single cell, one calculates the overlap of a particle of hypothetical size �x in each dimension with the
2
d cells it can intersect in d dimensions. The procedure is illustrated in Figure 3.2. The left intersection

with cell i shall be called d, the one with the right neighbour i + 1 shall be called t. A fraction of the
mass mpd is assigned to cell i, and the remainder mpt = mp(1� d) to cell i + 1. In three dimensions,
the respective assignments become e.g.

(i, j, k)  mpdxdydz (3.25)
(i + 1, j, k)  mptxdydz

(i, j + 1, k)  mpdxtydz

. . .

where the factor for the left cell is always the d and the one for the right the t, in total contributing
to eight cells. In the reverse interpolation, the values of the force in the eight cells are summed with
weights given by the products of t’s and d

0
s on the right hand side. For the CIC assignment, the force

changes linearly as the particle moves through the grid.

In principle one can go to arbitrarily higher order interpolation. The next higher order is called Triangular-
shaped-clouds (TSC) and it corresponds to quadratic multi-dimensional interpolation. It is rare that
schemes with higher order than TSC are used in computational cosmology.
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The resolution problem
• Issue: fixed grid means fixed resolution

• On the other hand, we don’t need high 
resolution for a large fraction of the volume

• Solution: adaptive algorithms which go to higher 
resolution only where necessary
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Figure 3.2: The Cloud-in-Cell (CIC) mass assignment scheme in one (left panel) and two (right panel)
dimensions. For a particle at location x, one determines the left grid cell i as well as the overlap of the
particle assuming a size �x with cell i and the neighbour i + 1. In more than one dimension, one has
to repeat this procedure for each dimension ending up with 2

d intersections.

Repeating this assignment for all particles yields an estimate of the density �eld which allows evaluation
of eq. 3.23. Important: In order for a mass assignment scheme to be consistent, one has to use the
same scheme for mass assignment and back-interpolation of the forceF, i.e. once we haveF, we simply
look up the value from cell (i, j, k) for the particle at (x, y, z) according to eq. 3.24. Note that the force
changes discontinuously for NGP assignment as a particle moves through the grid.

At the next higher order, one can use multi-linear interpolation, which is called Cloud-in-Cell (CIC)
interpolation in the context of mass/charge interpolation methods. Instead of assigning all mass to a
single cell, one calculates the overlap of a particle of hypothetical size �x in each dimension with the
2
d cells it can intersect in d dimensions. The procedure is illustrated in Figure 3.2. The left intersection

with cell i shall be called d, the one with the right neighbour i + 1 shall be called t. A fraction of the
mass mpd is assigned to cell i, and the remainder mpt = mp(1� d) to cell i + 1. In three dimensions,
the respective assignments become e.g.

(i, j, k)  mpdxdydz (3.25)
(i + 1, j, k)  mptxdydz

(i, j + 1, k)  mpdxtydz

. . .

where the factor for the left cell is always the d and the one for the right the t, in total contributing
to eight cells. In the reverse interpolation, the values of the force in the eight cells are summed with
weights given by the products of t’s and d

0
s on the right hand side. For the CIC assignment, the force

changes linearly as the particle moves through the grid.

In principle one can go to arbitrarily higher order interpolation. The next higher order is called Triangular-
shaped-clouds (TSC) and it corresponds to quadratic multi-dimensional interpolation. It is rare that
schemes with higher order than TSC are used in computational cosmology.
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Adaptive mesh 
refinement

• Start with regular base grid

• Split any cell that crosses a certain particle 
number threshold into 8 sub-cells; repeat 
process until particle number sufficiently 
small in all cells

• Advantage: can use same grid for 
hydrodynamics

• Disadvantage: need relaxation method to 
solve Poisson equation on subgrids to 
incorporate boundary conditions
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= actual particle
= meta particle

Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N log N in the
number of particles instead of N

2.

Tree-PM codes

While easy and relatively fast, the problemwith solving Poisson’s equation on a uniform grid is that this
approach does not lend itself well to situations that require a large dynamic range. In such cases, e.g. in
the context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven
their worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N

2 scaling problem in
direct summation of the mutual interactions between N bodies by a hierarchical approach and ‘meta’-
particles as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction

�(x) /
X

j

1

|x � xj |
=

X

j

1

|(x � �) � (xj � �)| (3.26)

sum can be multipole expanded using

1

|y + � � xj |
' 1

|y| � y · � � xj

|y|3 + . . . . (3.27)

If we set � to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|mathbfxj � �| is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if

✓ =
`

|y| < ✓c, (3.28)

where ` is the cell size of the node, and ✓c the threshold opening angle that we set. In the limit of small
✓c, one simply recovers direct summation since all nodes are opened and only the leafs are used.

35

Examples: RAMSES, ART



Tree algorithm
• Get rid of grid: instead, lump particles together 

to compute their effect on distant other particles
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Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N log N in the
number of particles instead of N

2.

Tree-PM codes

While easy and relatively fast, the problemwith solving Poisson’s equation on a uniform grid is that this
approach does not lend itself well to situations that require a large dynamic range. In such cases, e.g. in
the context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven
their worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N

2 scaling problem in
direct summation of the mutual interactions between N bodies by a hierarchical approach and ‘meta’-
particles as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction
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If we set � to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|mathbfxj � �| is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if

✓ =
`

|y| < ✓c, (3.28)

where ` is the cell size of the node, and ✓c the threshold opening angle that we set. In the limit of small
✓c, one simply recovers direct summation since all nodes are opened and only the leafs are used.
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Credit: Oliver Hahn’s lecture notes



Tree algorithm
• Get rid of grid: instead, lump particles together 

to compute their effect on distant other particles
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Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N log N in the
number of particles instead of N

2.

Tree-PM codes

While easy and relatively fast, the problemwith solving Poisson’s equation on a uniform grid is that this
approach does not lend itself well to situations that require a large dynamic range. In such cases, e.g. in
the context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven
their worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N

2 scaling problem in
direct summation of the mutual interactions between N bodies by a hierarchical approach and ‘meta’-
particles as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction
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If we set � to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|mathbfxj � �| is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if

✓ =
`

|y| < ✓c, (3.28)

where ` is the cell size of the node, and ✓c the threshold opening angle that we set. In the limit of small
✓c, one simply recovers direct summation since all nodes are opened and only the leafs are used.
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Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N log N in the
number of particles instead of N

2.

Tree-PM codes

While easy and relatively fast, the problemwith solving Poisson’s equation on a uniform grid is that this
approach does not lend itself well to situations that require a large dynamic range. In such cases, e.g. in
the context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven
their worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N

2 scaling problem in
direct summation of the mutual interactions between N bodies by a hierarchical approach and ‘meta’-
particles as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction
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If we set � to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|mathbfxj � �| is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if

✓ =
`

|y| < ✓c, (3.28)

where ` is the cell size of the node, and ✓c the threshold opening angle that we set. In the limit of small
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On small scales, use force softening to avoid particle “collisions”, hard scattering.

Credit: Oliver Hahn’s lecture notes
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Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N log N in the
number of particles instead of N
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Tree-PM codes

While easy and relatively fast, the problemwith solving Poisson’s equation on a uniform grid is that this
approach does not lend itself well to situations that require a large dynamic range. In such cases, e.g. in
the context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven
their worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N

2 scaling problem in
direct summation of the mutual interactions between N bodies by a hierarchical approach and ‘meta’-
particles as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction
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If we set � to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|mathbfxj � �| is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if
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where ` is the cell size of the node, and ✓c the threshold opening angle that we set. In the limit of small
✓c, one simply recovers direct summation since all nodes are opened and only the leafs are used.
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Tree algorithm
• Get rid of grid: instead, lump particles together 

to compute their effect on distant other particles

• Advantage: elegant and direct, no need for 
relaxation

• Disadvantage: need top-level grid for periodic 
boundary conditions, and hence split into grid 
and tree forces  (Tree-PM)

20

Examples: Gadget, PKDgrav



Brief history of 
cosmological simulations
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  Credit: Raul Angulo



Brief history of 
cosmological simulations
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Credit: Raul Angulo



Brief history of 
cosmological simulations
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 7

1985: The CDM model plus gravitational instability 
can explain qualitatively the observed universe

Credit: Raul Angulo



Brief history of 
cosmological simulations
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2017: EUCLID Flagship Simulation

Potter et al 2017
Credit: Raul Angulo



348 Modern Cosmology

FIGURE 12.6 Slices of width 15h−1 Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.

Result of an N-body 
simulation

• Catalog of “particle” 
positions and velocities at 
various points in time

• Basically, position of the 
phase-space sheet after 
gravitational evolution

• Use this to degenerate 
density field, for example
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show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.



Result of an N-body 
simulation

• Catalog of “particle” 
positions and 
velocities at various 
points in time

• Basically, position of 
the phase-space sheet 
after gravitational 
evolution

• Use this to generate 
density field, for 
example
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Millennium simulation (Volker Springel)
Logarithmic color scale, comoving length units

https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/index.shtml


Result of an N-body 
simulation

• Catalog of “particle” 
positions and 
velocities at various 
points in time

• Basically, position of 
the phase-space sheet 
after gravitational 
evolution

• Use this to generate 
density field, for 
example
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348 Modern Cosmology

FIGURE 12.6 Slices of width 15h−1 Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).

a spherical region whose interior density is above some threshold (“spherical overdensity”
algorithm), or if their nearest-neighbor distance to other halo particles is below a threshold
value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.

Phenomenology of 
nonlinear structure

• Small-scale density fluctuations are 
largest: small-scale structure forms first

• Then, structure successively assembles 
to large-mass objects

• Topologically, we have

• “3D:” voids - large underdense 
regions

• “2D:” sheets, or “pancakes”

• “1D:” filaments

• “0D:” bound structures - halos
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value (“friends-of-friends” algorithm). Crucially, by definition any particle can be part of
only a single halo. For both algorithms, the result is a catalog of halos with various masses,
and various other properties, such as center-of-mass position and velocity.

Phenomenology of 
nonlinear structure

• Small-scale density fluctuations are 
largest: small-scale structure forms first

• Then, structure successively assembles 
to large-mass objects

• Topologically, we have

• “3D:” voids - large underdense 
regions

• “2D:” sheets, or “pancakes”

• “1D:” filaments

• “0D:” bound structures - halos
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tion which follows 1010 particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a !CDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et
al. (2005).
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Dark matter halos
• Bound structures of dark matter and baryons

• Densest regions in the universe (from a cosmologist’s 
viewpoint…)

• All galaxies are believed to be hosted by dark matter 
halos

• Strong observational evidence for this from dynamics 
(velocities of gas, galaxies) and gravitational lensing, both 
of which probe all matter

• The most massive halos are associated with galaxy 
clusters

• Still, halos are mostly studied as objects in simulations
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Finding dark matter 
halos

• Halos are found using tools called halo finders 
which work on the catalog of particle positions

• Start from density maxima in the density field

• Determine whether particles are bound by 
comparing velocity w.r.t center of mass with 
local escape velocity

• Repeat this iteratively, since center of mass 
changes when particles are added

• Algorithms differ in detail
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The issue of halo mass
• Strict definition, counting all particles that are bound, is 

not very practical: affected by numerical noise, and we 
don’t observe dark matter anyway

• Definition based on maximum radius is more practical; 
however, no well-defined radius exists, since halo profiles 
smoothly transition to surrounding structure

• Instead, define mass and radius which enclose fixed 
density Δ times cosmic mean:

• Special case Δ=1: Lagrangian radius RL. Comoving size of 
region from which particles originated in the initial 
conditions. Important!
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But what is the significance of these structures and why are they called “halos”? The ev-
idence for dark matter from the dynamics of stars and gas within galaxies, and of galaxies
in clusters, goes back to the 1930s. Over the ensuing decades, it became clear that the dark
component that is responsible for the additional gravitational potential has to be far more
extended than the stars and the gas. Thus, the picture of a galaxy embedded in a much
larger surrounding dark structure—the halo—was established. Even though N-body sim-
ulations, which only take into account gravity, do not form galaxies, the bound structures
found in these simulations were soon identified with the halos hosting galaxies. Much ev-
idence has since accumulated for this paradigm. Indeed, it rests on a fairly solid physical
foundation. At high redshifts (around the epoch of reionization), the gas out of which stars
eventually form cools most efficiently in dense regions, and this cooling allows it to col-
lapse to sufficient density to trigger star formation. Hence, all galaxies are hosted by a dark
matter halo of some mass, while the converse does not necessarily hold: there may well be
low-mass halos which do not host a galaxy. Nevertheless, above a certain minimum halo
mass, we believe that the majority of dark matter halos host at least one galaxy. Thus, if
we know (or assume) how galaxies are distributed within halos as a function of halo mass,
we can predict the abundance and clustering of galaxies based on a gravity-only N-body
simulation—an enormous simplification over attempting to simulate the actual formation
of galaxies.

Another application of halos is based on the fact that any particle can be part of only
a single halo. If we further assume that all matter is enclosed in halos of some mass, we
can build the entire matter density field out of the halo density field along with a model for
their inner structure. This approach is referred to as the halo model, and we will return to
it in Sect. 12.7.

12.4.1 Halo masses and profiles

Both of the applications mentioned above are aided by a fortunate fact about halos: while
the detailed structure of individual halos is highly complex, their average properties are
remarkably simple. To zeroth order, the properties of a halo at a given time are determined
by a single number: its mass at that time. Before making use of this fact, we need to think
about how to define a halo’s mass. In simulations, one could strictly define it as the mass
contained in all particles that are gravitationally bound. However, this definition is not
particularly useful for connecting to observations, where we typically measure all visible
or total matter within a given region centered on a halo. A more practical definition of the
halo mass is to include all matter enclosed within a sphere around the halo center that
encloses a fixed density, usually phrased in terms of a number ! times the mean matter
density. That is, one finds a radius R! such that

M(< R!)

4πR3
!/3

= ! × ρm(t0), (12.61)

where R! is the comoving radius of the sphere (since simulations use comoving coordi-
nates to follow the particles, it is convenient to use the same coordinates when analyzing
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The abundance of CDM collapsed structures

Angulo et al 2012 Despali et al 2015

Simulations resolve the mass range relevant for galaxy formation
If written in the adequate variables, the abundance is universal

Halo abundance
• Mean number density of 

halos in logarithmic mass 
bins

• Power-law at small 
masses

• Exponential cutoff at 
high masses - reflecting 
Gaussian statistics of 
initial density field
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Inner structure of halos
35

 21

Springel et al 2008

The inner structure of Dark Matter halos

Smooth distribution

Springel et al 2008

Density profle is described by NFW/Einasto
functional form, independent of mass, 
Cosmology, etc 

slope = -1

slope = -3

• Spherically-averaged density profile: Navarro-
Frenk-White (1996) (NFW) form is universal

Slide credit: 
Raul Angulo

Eq. (12.62)



Inner structure of halos
36

• However, halos formed from smaller previous formed 
halos, which survive as substructure (subhalos)
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Springel et al 2008

The inner structure of Dark Matter halos

Smooth distribution

Hierarchy of substructures

→ Abundance

Springel et al 2008

Slide credit: 
Raul Angulo



From halos to galaxies
37

• We think that galaxies reside 
in these substructures of 
halos - but which ones…?

• Galaxy formation and 
(effective field) theory of 
galaxy clustering: next 
lecture!
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Springel et al 2008

The inner structure of Dark Matter halos

Smooth distribution

Hierarchy of substructures

→ Abundance

Springel et al 2008


