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QOutline of lectures

. The problem: collisionless Boltzmann equation and fluid approximation

|. Linear evolution

. Nonlinear evolution of matter

|. Perturbation theory

2. Simulations <- HERE

3. Phenomenology of nonlinear matter distribution
. Formation and distribution of galaxies

|. Galaxy formation in a nutshell

2. Spherical collapse model

3. Physical clustering of halos and galaxies; bias

4. Observed clustering of galaxies

. Beyond ACDM



Notation

ds? = —(1 4 2W(x, t))dt + a2(t)(1 + 2®(x, t))da?

® Comoving coordinates: dr = a(t)dx
. _dt _ da _ dlna
® Conformal time: dn= o= s =
. . dz
® Comoving distance: dx =—dn= =
: : D dax ,
® Particle velocity/momentum: v= = =a— ==
m dt
® Fluid velocity; divergence: u; 0 =0

® Gravitational potential: O




Notation

The linear power spectrum (filling in a gap in
Lecture |)

Almost-scale-invariant power spectrum

ng—1
from inflation: Px(k) = 2724473 (kf)
p

Relating O to curvature perturbation:

2k%a(n) 3 D(a)
M (k,n) = O(k,n); ®(k,n)==T(k R(k
(k,n) 30, H? %ﬁ) -T(k)— —R(k)
Note: throughout, d is in synchronous-comoving gauge.Then
Result: thistrerationgrem:ins valid Zn all scales. 5
87% As 5 ks
PL(k,a) = Dy (a)T*(k) —
25 QT HAK !

(Dy = D)



Notation

The linear power spectrum (filling in a gap in
Lecture |)

Almost-scale-invariant power spectrum

ng—1
from inflation: Px(k) = 2724473 (kf)
p

Relating O to curvature perturbation:

Growth factor -> L. |

2k%a(n) 3 )
S (k.n) = ®(k.n): D(k.n) = T(k R(k
(k,n) 30, H2 (k,n); ®(k,n) - ( i (k)
Result:
87% As 5 ks
Pr(k,a) = D% (a)T~ (k)

(Dy = D)



Notation

The linear power spectrum (filling in a gap in
Lecture |)

Almost-scale-invariant power spectrum

° ° ns—l
from inflation: Px(k) = 2724473 (kf)
p

Relating O to curvature perturbation:

5t (kvn) — zg;agg)q)(kan); (I)(kﬂ?) — WR(k)

Transfer function: evolution of
ReSUIt' perturbations in early Universe

872 A ks
=25 P2 (a)TA(k)
25 Q3 Hlk

P(k,a) = 1

Nng—
p
(D_|_ = D)



Notation

The linear power spectrum (filling in a gap in
Lecture |)

Almost-scale-invariant power spectrum

° ° ns—l
from inflation: Px(k) = 2724473 (kf)
p

Relating O to curvature perturbation:

2k%a(n) 3 D(a)

d S () = —
SQmHg (k,n); (k,n) 5T(k) q

6% (k) = R(k)

Result:

Pr(k,a) = 8% A, @ T2(k) k™ Time dependence of linear P(k) ~ D2,
| 25 Q3 Hékgs_l as we showed in L. |

(Dy = D)




Structure formation beyond
perturbation theory

® |h order to take phasespace evolution into
account properly, need to go beyond fluid
picture and perturbation theory.

® Back to collisionless Boltzmann equation!

® |nstead of trying to calculate 6D
distribution function, we will discretize the
thin phasespace sheet that (dark) matter is

Phase-space Uz,

localized in <heet




N-body simulations

® Discretize the thin phasespace sheet that
(dark) matter is localized in

® Follow the evolution of phasespace elements
(“particles™) by integrating the geodesic
equation (characteristics of the PDE)

Credit: Raul Angulo



N-body simulations

® Discretize the thin phasespace sheet that (dark)
matter is localized in

® Follow the evolution of phasespace elements
(“particles™) by integrating the geodesic
equation (characteristics of the PDE)

® Equations of motion:

| | i i

dx' P ) . ) dx . pc

dt  ma’ Pe = ap dt  ma?’

dp _ i mow > A W

TR Pe _ 22 Eq. (12.57)
dt 0x!

3
and V?W = 5szm(n)(aH)z(Sm.
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® Specifically, solve for particle displacement at linear order: |st order Lagrangian

® Technique used to generate initial conditions for full simulations at high z

® Structure appears after just one time step!

40
0

1
S

100 =
SO
2

[q/ody] &

x [Mpec/h]

x [Mpe/h]



Time integration

® | eapfrog scheme: preserves energy (as well as
other constants of motion) to cubic order in time

step

1. Compute the gravitational potential generated by the collection of particles, and take

its gradient to obtain VW(x, 1)
2. Change each particle’s momentum (“kick”) by

p(+ A1/2) = p(t = A1/2) —=mV W (x D, )AL (12.59)

3. Move each particle position (“drift”) by

0
D+ A1/2

pe (1 +A41/2) (12.60)
ma?(t + At/2)

xD @+ A =xD) +

4. Repeat.

Position: O O O O

(Drift)

Velocity:
(Kick) O O O Credit: Raul Angulo




Solving for the force

In order to move particles, we need to calculate the force
(gradient of the potential) at each particle’s position

As accurately as possible, but with reasonable cost

Example: could directly sum up forces of all other
particles (direct summation or particle-particle algorithm)

v sz\m _mz‘s
i 1

Problem: computational cost scales as N2 for N particles

Our goal is to use billions of particles, so algorithm has to
scale as N or N log N at most.

Reminder: N-body particles are not actual particles!



Solving for the force

® Simplest solution: solve potential on a fixed

grid: particle-mesh (PM) algorithm

(x,y)
o

Assign particles to grid to obtain density (most

commonly using cloud-in-cell [CIC] assignment)

Solve Poisson equation on grid, via discrete Fast
Fourier Transform (FFT) V20 = 20 () (@H)5m.

. Interpolate gradient of resulting potential to

each particle’s position (using same
interpolation scheme)

® Cost:N log N due to FFT



The resolution problem

® |ssue: fixed grid means fixed resolution

® Cannot resolve small-scale structure below grid
resolution, and increasing resolution is memory- and
CPU-intensive (~Ngia3)

® On the other hand, we don’t need high resolution for a
large fraction of the volume

(x,y)




The resolution problem

® |ssue: fixed grid means fixed resolution

® On the other hand, we don’t need high
resolution for a large fraction of the volume

® Solution: adaptive algorithms which go to higher
resolution only where necessary

(x,y)




Adaptive mesh
refinement

® Start with regular base grid

® Split any cell that crosses a certain particle
number threshold into 8 sub-cells; repeat EQ

process until particle number sufficiently .
small in all cells

® Advantage: can use same grid for
hydrodynamics

® Disadvantage: need relaxation method to
solve Poisson equation on subgrids to
incorporate boundary conditions

Examples: RAMSES, ART




Tree algorithm

® Get rid of grid: instead, lump particles together
to compute their effect on distant other particles

@ = actual particle
= meta particle

4] (4

AN AN
A o\

Credit: Oliver Hahn’s lecture notes



Tree algorithm

® Get rid of grid: instead, lump particles together
to compute their effect on distant other particles

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction © = actual particle

1 1
ORI ey D B VI R Y

= meta particle

sum can be multipole expanded using
4] (4

1 1 }\—Xj
~— -y
Yy +A—x; |y ly|?

. AN AN
M {

If we set \ to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
imathbfx; — Al is bounded by the space partitioning cell size, we can directly control the accuracy by
accepting a meta particle as a valid approximation for the entire branch if

o=t <o, (3.28)

ly

On small scales, use force softening to avoid particle “collisions”, hard scattering.

Credit: Oliver Hahn’s lecture notes



Tree algorithm

® Get rid of grid: instead, lump particles together
to compute their effect on distant other particles

® Advantage: elegant and direct, no need for
relaxation

® Disadvantage: need top-level grid for periodic
boundary conditions, and hence split into grid
and tree forces (Tree-PM)

4\\; b o 4 /A\o
i AN

Examples: Gadget, PKDgrav
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Brief history of
cosmological simulations

First N-body calculation: light bulbs, photocells and galvanometers

VOLUME 94 NOVEMBER 1941 NUMBER 3

ON THE CLUSTERING TENDENCIES AMONG THE NEBULAE

II. A STUDY OF ENCOUNTERS BETWEEN LABORATORY MODELS OF
STELLAR SYSTEMS BY A NEW INTEGRATION PROCEDURE

ERIK HOLMBERG

85
- ..

Tidal features appear in |
Interacting nebulae |

Credit: Raul Angulo
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Brief history of
cosmological simulations

N-body calculation supports the idea of dark Matter

A rotating group of 300 bodies
ends up too concentrated.

1970-1974, Princeton

Dark matter (M/L=10) is
needed to stabilize the system

Credit: Raul Angulo
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Brief history of
cosmological simulations

1985: The CDM model plus gravitational instability
can explain qualitatively the observed universe
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Result of an N-body
simulation

® Catalog of “particle” PR T e
positions and velocities at Al ol e e LS R R
various points in time

® Basically, position of the
phase-space sheet after
gravitational evolution

® Use this to degenerate
density field, for example

FIGURE 12.6 Slices of width 152~! Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 10'° particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a ACDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et

al. (2005).
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Result of an N-body
simulation

® Catalog of “particle”
positions and
velocities at various
points in time

® Basically, position of
the phase-space sheet
after gravitational
evolution

® Use this to generate
density field, for
example

Millennium simulation (Volker Springel)

Logarithmic color scale, comoving length units


https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/index.shtml
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Result of an N-body
simulation

® Catalog of “particle”
positions and
velocities at various
points in time

® Basically, position of
the phase-space sheet
after gravitational
evolution

® Use this to generate
density field, for
example

Millennium simulation (Volker Springel)

Logarithmic color scale, comoving length units


https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/index.shtml
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Phenomenology of
nonlinear structure

® Small-scale density fluctuations are AR ""‘”“"",SQOMpp/h
largest: small-scale structure forms first FEEEEEECES AT E

® Then, structure successively assembles
to large-mass objects

® TJopologically, we have

:’;25Mpcfh
“3D:” voids - large underdense '
regions

“2D:” sheets, or “pancakes”

“ID:” filaments

*  31.25 Mpc/h

“OD:” bound structures - halos

FIGURE 12.6 Slices of width 152~! Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 10'° particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a ACDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et

al. (2005).
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Phenomenology of
nonlinear structure

® Small-scale density fluctuations are AR ""‘”“"",SQOMpp/h
largest: small-scale structure forms first FEEEEEECES AT E

® Then, structure successively assembles
to large-mass objects

® Jopologi

:’;25Mpcfh
“3D:” voids - large underdense '
regions

“ID:” filaments

*  31.25 Mpc/h

“OD:” bound structures - halos

FIGURE 12.6 Slices of width 152~! Mpc through the density field at redshift zero in the Millennium N-body simula-
tion which follows 10'° particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to
show the hierarchical nature of the matter distribution in a ACDM cosmology. The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et

al. (2005).
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Phenomenology of
nonlinear structure

® Small-scale density fluctuations are AR ,_‘v ""‘”“"",SQOMpp/h
largest: small-scale structure forms first FEEEEEECES AT E

® Then, structure successively assembles
to large-mass objects

® TJopologically, we have

:’;25Mpcfh
“3D:” voids - large underdense '
regions

“2D:” sheets, or “pancakes”

*  31.25 Mpc/h

“OD:” bound structures - halos

FIGURE 12.6 Slices oTWaigh 15/~ Mpc through the density field at redshift zero in the A4a#®n/um N-body simula-
tion which follows 10'° particlé 3se-space elements). From top toh Pthe different panels zoom in to
show the hierarchical nature of the matter distribution'in"a D cosmology The spatial scale is labeled in each
panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et

al. (2005).
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Dark matter halos

Bound structures of dark matter and baryons

Densest regions in the universe (from a cosmologist’s
viewpoint...)

All galaxies are believed to be hosted by dark matter
halos

® Strong observational evidence for this from dynamics
(velocities of gas, galaxies) and gravitational lensing, both
of which probe all matter

The most massive halos are associated with galaxy
clusters

Still, halos are mostly studied as objects in simulations



Finding dark matter
halos

Halos are found using tools called halo finders
which work on the catalog of particle positions

Start from density maxima in the density field

Determine whether particles are bound by
comparing velocity w.r.t center of mass with
local escape velocity

Repeat this iteratively, since center of mass
changes when particles are added

Algorithms differ in detail

32



The issue of halo mass

® Strict definition, counting all particles that are bound, is
not very practical: affected by numerical noise, and we
don’t observe dark matter anyway

® Definition based on maximum radius is more practical;
however, no well-defined radius exists, since halo profiles

smoot

nly transition to surrounding structure

® Instead, define mass and radius which enclose fixed
density A times cosmic mean:

M=RA) _ A pmto).  Ma = M(< Ra)
— X . p—
47 R3 /3 om0 A A
® Special case A=I: Lagrangian radius R.. Comoving size of
region from which particles originated in the initial ir
conditions. Important! M = ==pm(to)

33
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Halo abundance

® Mean number density of
halos in logarithmic mass
bins

® Power-law at small ;

masses =

2

® Exponential cutoff at -
high masses - reflecting

Gaussian statistics of
initial density field

103

1078

34

dn/dM ~ M- (at small masses)

10° |
1072
1074}

107°

-0 '

lo-m-i

M-I
Millennium
MXXL

Angulo et al 2012
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Inner structure of halos

® Spherically-averaged density profile: Navarro-
Frenk-White (1996) (NFW) form is universal

Smooth distribution

Density profile is described by NFW/Einasto
functional form, independent of mass,
Cosmology, etc

109_ llllll l 1 l]ll”] L | IIIIIII [ lllll]l 1

108,;— _ slope = -1 2=00
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- Slide credit:

Raul Angulo
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Springel et al 2008
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Eq. (12.62)

Inp(r)/p-2 = (-2/a) (rir-z)"
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Inner structure of halos

® However, halos formed from smaller previous formed
halos, which survive as substructure (subhalos)

Smooth distribution

Hierarchy of substructures

. Abundance
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Slide credit:
Raul Angulo

—
o
A

|

Springel et al 2008

dN/dM,, [Mg']

-

o
3
[

10

10-10 11 lllllll 11 lllllll L1 uuul 11 lllllll 11 uuul L1 lllllll \‘..l‘{l‘—
10* 10° 10° 107 108 10° 10"
M, [Mg]

23
Springel et al 2008



From halos to galaxies

® Ve think that galaxies reside
in these substructures of
halos - but which ones...?

® Galaxy formation and
(effective field) theory of
galaxy clustering: next

IeCtu re! AquariusSsA-1 4
Springel et al 2008
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