Structure Formation Lecture 3

Fabian Schmidt MPA

MODERN

Scott Dodelson Fabian Schmidt

COSMOLOGY

Second Edition

All figures taken from Modern Cosmology, Second Edition, unless otherwise noted

ICTP-SAIFR School on Cosmology, January 2021

Outline of lectures

- I. The problem: collisionless Boltzmann equation and fluid approximation
 - I. Linear evolution
- 2. Nonlinear evolution of matter
 - I. Perturbation theory
 - 2. Simulations

<- HERE

- 3. Phenomenology of nonlinear matter distribution
- 3. Formation and distribution of galaxies
 - I. Galaxy formation in a nutshell
 - 2. Spherical collapse model
 - 3. Physical clustering of halos and galaxies; bias
 - 4. Observed clustering of galaxies
- 4. Beyond ΛCDM

Notation

$$ds^{2} = -(1 + 2\Psi(\boldsymbol{x}, t))dt^{2} + a^{2}(t)(1 + 2\Phi(\boldsymbol{x}, t))d\boldsymbol{x}^{2}$$

- Comoving coordinates:
- Conformal time:
 - Comoving distance:
- Particle velocity/momentum: $v = \frac{p}{m}$
- Fluid velocity; divergence:
- Gravitational potential:

$$d\chi = -d\eta = \frac{dz}{H(z)}$$

 $d\mathbf{r} = a(t)d\mathbf{x}$

 $d\eta = \frac{dt}{a(t)} = \frac{da}{a^2 H(a)} = \frac{d\ln a}{a H(a)}.$

n:
$$\boldsymbol{v} = \frac{\boldsymbol{p}}{m} = a \frac{d\boldsymbol{x}}{dt} = \boldsymbol{x}'$$

 Ψ

$$\boldsymbol{u}; \quad \theta = \partial_i u^i$$

- The linear power spectrum (filling in a gap in Lecture I)
- Almost-scale-invariant power spectrum from inflation: $P_{\mathcal{R}}(k) = 2\pi^2 \mathcal{A}_s k^{-3} \left(\frac{k}{k_p}\right)^{n_s - 1}$
- Relating δ to curvature perturbation:

$$\delta^{(1)}(\boldsymbol{k},\eta) = \frac{2k^2 a(\eta)}{3\Omega_m H_0^2} \Phi(\boldsymbol{k},\eta); \quad \Phi(\boldsymbol{k},\eta) = \frac{3}{5}T(k)\frac{D(a)}{a}\mathcal{R}(\boldsymbol{k})$$

Note: throughout, δ is in synchronous-comoving gauge. Then this relation remains valid on all scales.

$$P_{\rm L}(k,a) = \frac{8\pi^2}{25} \frac{\mathcal{A}_s}{\Omega_{\rm m}^2} D_+^2(a) T^2(k) \frac{k^{n_s}}{H_0^4 k_{\rm p}^{n_s - 1}}$$

Result:

 $(D_+ \equiv D)$

- The linear power spectrum (filling in a gap in Lecture I)
- Almost-scale-invariant power spectrum from inflation: $P_{\mathcal{R}}(k) = 2\pi^2 \mathcal{A}_s k^{-3} \left(\frac{k}{k_p}\right)^{n_s - 1}$
- Relating δ to curvature perturbation: $\delta^{(1)}(\mathbf{k},\eta) = \frac{2k^2 a(\eta)}{3\Omega_m H_0^2} \Phi(\mathbf{k},\eta); \quad \Phi(\mathbf{k},\eta) = \frac{3}{5}T(\mathbf{k}) \underbrace{\mathcal{D}_a^{(1)}}_{a} \mathcal{R}(\mathbf{k})$
- Result:

$$P_{\rm L}(k,a) = \frac{8\pi^2}{25} \frac{\mathcal{A}_s}{\Omega_{\rm m}^2} D_+^2(a) T^2(k) \frac{k^{n_s}}{H_0^4 k_{\rm p}^{n_s - 1}}$$
$$(D_+ \equiv D)$$

- The linear power spectrum (filling in a gap in Lecture I)
- Almost-scale-invariant power spectrum from inflation: $P_{\mathcal{R}}(k) = 2\pi^2 \mathcal{A}_s k^{-3} \left(\frac{k}{k_p}\right)^{n_s - 1}$
- Relating δ to curvature perturbation:

$$\delta^{(1)}(\boldsymbol{k},\eta) = \frac{2k^2 a(\eta)}{3\Omega_m H_0^2} \Phi(\boldsymbol{k},\eta); \quad \Phi(\boldsymbol{k},\eta) = \underbrace{3T(\boldsymbol{k})}_{0} \underbrace{D(a)}_{a} \mathcal{R}(\boldsymbol{k})$$

Transfer function: evolution of perturbations in early Universe

$$P_{\rm L}(k,a) = \frac{8\pi^2}{25} \frac{\mathcal{A}_s}{\Omega_{\rm m}^2} D_+^2(a) T^2(k) \frac{k^{n_s}}{H_0^4 k_{\rm p}^{n_s - 1}}$$
$$(D_+ \equiv D)$$

Result:

- The linear power spectrum (filling in a gap in Lecture I)
- Almost-scale-invariant power spectrum from inflation: $P_{\mathcal{R}}(k) = 2\pi^2 \mathcal{A}_s k^{-3} \left(\frac{k}{k_p}\right)^{n_s - 1}$
- Relating δ to curvature perturbation:

$$\delta^{(1)}(\boldsymbol{k},\eta) = \frac{2k^2 a(\eta)}{3\Omega_m H_0^2} \Phi(\boldsymbol{k},\eta); \quad \Phi(\boldsymbol{k},\eta) = \frac{3}{5}T(k)\frac{D(a)}{a}\mathcal{R}(\boldsymbol{k})$$

$$P_{\rm L}(k,a) = \frac{8\pi^2}{25} \frac{\mathcal{A}_s}{\Omega_{\rm m}^2} \frac{\mathcal{P}_{\rm L}(a)}{\mathcal{P}_{\rm m}^2} T^2(k) \frac{k^{n_s}}{H_0^4 k_{\rm p}^{n_s - 1}}$$
 Time dependence of linear P(k) ~ D²,
$$(D_+ \equiv D)$$

Structure formation beyond perturbation theory

- In order to take phasespace evolution into account properly, need to go beyond fluid picture and perturbation theory.
- Back to collisionless Boltzmann equation!
- Instead of trying to calculate 6D distribution function, we will discretize the thin phasespace sheet that (dark) matter is localized in

N-body simulations

- Discretize the thin phasespace sheet that (dark) matter is localized in
- Follow the evolution of phasespace elements ("particles") by integrating the geodesic equation (characteristics of the PDE)

N-body simulations

- Discretize the thin phasespace sheet that (dark) matter is localized in
- Follow the evolution of phasespace elements ("particles") by integrating the geodesic equation (*characteristics* of the PDE)

• Equations of motion:

Eq. (12.57)

N-body simulations in one step

- Structure appears after just one time step!
- Specifically, solve for particle displacement at linear order: 1st order Lagrangian perturbation theory (Zel'dovich approximation)
- Technique used to generate initial conditions for full simulations at high z

Time integration

- Leapfrog scheme: preserves energy (as well as other constants of motion) to cubic order in time step
 - **1.** Compute the gravitational potential generated by the collection of particles, and take its gradient to obtain $\nabla \Psi(\mathbf{x}, t)$
- 2. Change each particle's momentum ("kick") by

$$\boldsymbol{p}_{c}^{(i)}(t + \Delta t/2) = \boldsymbol{p}_{c}^{(i)}(t - \Delta t/2) - m\nabla\Psi(\boldsymbol{x}^{(i)}, t)\Delta t.$$
(12.59)

3. Move each particle position ("drift") by

$$\mathbf{x}^{(i)}(t + \Delta t) = \mathbf{x}^{(i)}(t) + \frac{\mathbf{p}_c^{(i)}(t + \Delta t/2)}{ma^2(t + \Delta t/2)}\Delta t.$$
 (12.60)

4. Repeat.

Credit: Raul Angulo

Solving for the force

- In order to move particles, we need to calculate the force (gradient of the potential) at each particle's position
- As accurately as possible, but with reasonable cost
- Example: could directly sum up forces of all other particles (direct summation or particle-particle algorithm)

$$abla \Psi(oldsymbol{x}_i) = Gm \sum_{j \neq i} rac{oldsymbol{x}_j - oldsymbol{x}_i}{|oldsymbol{x}_j - oldsymbol{x}_i|^3}$$

- Problem: computational cost scales as N^2 for N particles
- Our goal is to use billions of particles, so algorithm has to scale as N or N log N at most.

Reminder: N-body particles are not actual particles!

Solving for the force

- Simplest solution: solve potential on a fixed grid: *particle-mesh (PM) algorithm*
- I. Assign particles to grid to obtain density/(most commonly using cloud-in-cell [CIC] assignment)
- 2. Solve Poisson equation on grid, via discrete Fast Fourier Transform (FFT) $\nabla^2 \Psi = \nabla^2 \Psi$
- 3. Interpolate gradient of resulting potential to each particle's position (using same interpolation scheme)
 - Cost: N log N due to FFT

$$\Psi^2 \Psi = \frac{3}{2} \Omega_{\rm m}(\eta) (aH)^2 \delta_{\rm m}.$$

The resolution problem

- Issue: fixed grid means fixed resolution
- Cannot resolve small-scale structure below grid resolution, and increasing resolution is memory- and CPU-intensive ($\sim N_{grid}^3$)
- On the other hand, we don't need high resolution for a large fraction of the volume

The resolution problem

- Issue: fixed grid means fixed resolution
- On the other hand, we don't need high resolution for a large fraction of the volume
- Solution: adaptive algorithms which go to higher resolution only where necessary

Adaptive mesh refinement

- Start with regular base grid
- Split any cell that crosses a certain particle number threshold into 8 sub-cells; repeat process until particle number sufficiently small in all cells
- Advantage: can use same grid for hydrodynamics
- Disadvantage: need relaxation method to solve Poisson equation on subgrids to incorporate boundary conditions

Tree algorithm

• Get rid of grid: instead, lump particles together to compute their effect on distant other particles

• Get rid of grid: instead, lump particles together to compute their effect on distant other particles

At each node in the tree, one inserts a 'meta' particle that carries the mass and sits at the centre of mass of the branch of the tree. The total interaction

$$\phi(\mathbf{x}) \propto \sum_{j} \frac{1}{|\mathbf{x} - \mathbf{x}_{j}|} = \sum_{j} \frac{1}{|(\mathbf{x} - \mathbf{\lambda}) - (\mathbf{x}_{j} - \mathbf{\lambda})|}$$
sum can be multipole expanded using
$$\frac{1}{|\mathbf{y} + \mathbf{\lambda} - \mathbf{x}_{j}|} \simeq \frac{1}{|y|} - \mathbf{y} \cdot \frac{\mathbf{\lambda} - \mathbf{x}_{j}}{|\mathbf{y}|^{3}} + \dots$$

If we set λ to be the centre of mass, then the dipole vanishes. The trick is now that since we know that $|mathbfx_j - \lambda|$ is bounded by the space partitioning cell size, we can directly control the accuracy by accepting a meta particle as a valid approximation for the entire branch if

$$\theta = \frac{\ell}{|\mathbf{y}|} < \theta_c, \tag{3.28}$$

On small scales, use force softening to avoid particle "collisions", hard scattering.

Credit: Oliver Hahn's lecture notes

- actual particle

Tree algorithm

- Get rid of grid: instead, lump particles together to compute their effect on distant other particles
- Advantage: elegant and direct, no need for relaxation
- Disadvantage: need top-level grid for periodic boundary conditions, and hence split into grid and tree forces (<u>Tree-PM</u>)

Examples: Gadget, PKDgrav

First N-body calculation: light bulbs, photocells and galvanometers

VOLUME 94

NOVEMBER 1941

NUMBER 3

ON THE CLUSTERING TENDENCIES AMONG THE NEBULAE

II. A STUDY OF ENCOUNTERS BETWEEN LABORATORY MODELS OF STELLAR SYSTEMS BY A NEW INTEGRATION PROCEDURE

ERIK HOLMBERG

21

N-body calculation supports the idea of dark Matter

A rotating group of 300 bodies ends up *too* concentrated.

1970-1974, Princeton

Dark matter (M/L=10) is needed to stabilize the system

Credit: Raul Angulo

1985: The CDM model plus gravitational instability can explain qualitatively the observed universe

Credit: Raul Angulo

2017: EUCLID Flagship Simulation

Credit: Raul Angulo

Result of an N-body simulation

- Catalog of "particle" positions and velocities at various points in time
- Basically, position of the phase-space sheet after gravitational evolution
- Use this to degenerate density field, for example

FIGURE 12.6 Slices of width $15 h^{-1}$ Mpc through the density field at redshift zero in the *Millennium* N-body simulation which follows 10^{10} particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to show the hierarchical nature of the matter distribution in a Λ CDM cosmology. The spatial scale is labeled in each panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et al. (2005).

Result of an N-body simulation

- Catalog of "particle" positions and velocities at various points in time
- Basically, position of the phase-space sheet after gravitational evolution
- Use this to generate density field, for example

<u>Millennium simulation</u> (Volker Springel) Logarithmic color scale, comoving length units

Result of an N-body simulation

- Catalog of "particle" positions and velocities at various points in time
- Basically, position of the phase-space sheet after gravitational evolution
- Use this to generate density field, for example

<u>Millennium simulation</u> (Volker Springel) Logarithmic color scale, comoving length units

Phenomenology of nonlinear structure

- Small-scale density fluctuations are largest: small-scale structure forms first
- Then, structure successively assembles to large-mass objects
- Topologically, we have
 - "3D:" voids large underdense regions
 - "2D:" sheets, or "pancakes"
 - "ID:" filaments
 - "0D:" bound structures halos

FIGURE 12.6 Slices of width $15 h^{-1}$ Mpc through the density field at redshift zero in the *Millennium* N-body simulation which follows 10^{10} particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to show the hierarchical nature of the matter distribution in a Λ CDM cosmology. The spatial scale is labeled in each panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et al. (2005).

Phenomenology of nonlinear structure

- Small-scale density fluctuations are largest: small-scale structure forms first
- Then, structure successively assembles to large-mass objects
- Topologically, we have

"3D:" voids - large underdense regions

- "2D:" sheets, or "pancakes"
- "ID:" filaments
- "0D:" bound structures halos

FIGURE 12.6 Slices of width $15 h^{-1}$ Mpc through the density field at redshift zero in the *Millennium* N-body simulation which follows 10^{10} particles (i.e., phase-space elements). From top to bottom, the different panels zoom in to show the hierarchical nature of the matter distribution in a Λ CDM cosmology. The spatial scale is labeled in each panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et al. (2005).

Phenomenology of nonlinear structure

- Small-scale density fluctuations are largest: small-scale structure forms first
- Then, structure successively assembles to large-mass objects
- Topologically, we have
 - "3D:" voids large underdense regions
 - "2D:" sheets, or "pancakes"
 - "ID." filaments
 "0D:" bound structures halos

FIGURE 12.6 Slices of width $15h^{-1}$ Mpc through the density field at redshift zero in the *Millennium* N-body simulation which follows 10^{10} particles (not, phase-space elements). From top to bettom, the different panels zoom in to show the hierarchical nature of the matter distribution in a Λ CDM cosmology. The spatial scale is labeled in each panel. The color scale denotes density in logarithmic units. The simulations shown here are described in Springel et al. (2005).

Dark matter halos

- Bound structures of dark matter and baryons
- Densest regions in the universe (from a cosmologist's viewpoint...)
- All galaxies are believed to be hosted by dark matter halos
 - Strong observational evidence for this from <u>dynamics</u> (velocities of gas, galaxies) and <u>gravitational lensing</u>, both of which probe all matter
- The most massive halos are associated with galaxy clusters
- Still, halos are mostly studied as objects in simulations

Finding dark matter halos

- Halos are found using tools called *halo finders* which work on the catalog of particle positions
- Start from density maxima in the density field
- Determine whether particles are bound by comparing velocity w.r.t center of mass with local escape velocity
- Repeat this iteratively, since center of mass changes when particles are added
- Algorithms differ in detail

The issue of halo mass

- Strict definition, counting all particles that are bound, is not very practical: affected by numerical noise, and we don't observe dark matter anyway
- Definition based on maximum radius is more practical; however, no well-defined radius exists, since halo profiles smoothly transition to surrounding structure
- Instead, define mass and radius which enclose fixed density Δ times cosmic mean:

$$\frac{M(\langle R_{\Delta})}{4\pi R_{\Delta}^3/3} = \Delta \times \rho_{\rm m}(t_0), \qquad M_{\Delta} = M(\langle R_{\Delta})$$

• Special case $\Delta = 1$: Lagrangian radius R_L . Comoving size of region from which particles originated in the initial conditions. Important! $M = \frac{4\pi}{3} \bar{\rho}_m(t_0) R_L^3$

Halo abundance

- Mean number density of halos in logarithmic mass bins
- Power-law at small masses
- Exponential cutoff at high masses - reflecting Gaussian statistics of initial density field

Angulo et al 2012

Inner structure of halos

 Spherically-averaged density profile: Navarro-Frenk-White (1996) (NFW) form is universal

Springel et al 2008

Eq. (12.62)

$$\rho(r) = \frac{\rho_s}{(r/r_s)(1 + (r/r_s))^2}$$
$$\ln \rho(r) / \rho_{-2} = (-2/\alpha) (r/r_{-2})^{\alpha}$$

Smooth distribution

Density profile is described by NFW/Einasto functional form, independent of mass, Cosmology, etc

Slide credit: Raul Angulo

Inner structure of halos

• However, halos formed from smaller previous formed halos, which survive as substructure (subhalos)

Slide credit: Raul Angulo

From halos to galaxies

- We think that galaxies reside in these substructures of halos - but which ones...?
- Galaxy formation and (effective field) theory of galaxy clustering: next lecture!

Springel et al 2008