
Structure Formation

Lecture 4

Fabian Schmidt

MPA

ICTP-SAIFR School on Cosmology, January 2021

All figures taken from Modern Cosmology, Second Edition, unless otherwise noted Second Edition

Scott Dodelson 
Fabian Schmidt

MODERN 
COSMOLOGY

1



Outline of lectures
1. The problem: collisionless Boltzmann equation and fluid approximation


1. Linear evolution


2. Nonlinear evolution of matter


1. Perturbation theory


2. Simulations


3. Phenomenology of nonlinear matter distribution


3. Formation and distribution of galaxies


1. Galaxy formation in a nutshell


2. Spherical collapse model


3. Physical clustering of halos and galaxies; bias


4. Observed clustering of galaxies


4. Beyond ΛCDM
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Notation

• Comoving coordinates:


• Conformal time:


• Comoving distance:


• Particle velocity/momentum:


• Fluid velocity; divergence:


• Gravitational potential:

D
Symbols

D.1 Mathematical and geometrical definitions

Symbol Explanation

ḟ (x, t) ≡ ∂f (x, t)/∂t Partial derivative with respect to time
f ′(x,η) ≡ ∂f (x,η)/∂η Derivative with respect to conformal time
φ,α ≡ ∂φ(x)/∂xα Partial derivative with respect to coordinate xα

δν
α , δij Kronecker symbol

δ
(n)
D (k − k) Dirac-delta distribution in n dimensions

êx,y,z Unit vector in direction of three spatial Cartesian axes
n̂ 3D unit vector (full-sky position)
θ 2D Euclidean vector (flat-sky position)
d' Solid angle integration measure

Throughout, spatial indices ijk . . . are raised and lowered with δij .

D.2 Frequently used relations
Frequently used time integration measures are

dη = dt

a(t)
= da

a2H(a)
= d lna

aH(a)
. (D.1)

For light rays, we further have

dχ = −dη = dz

H(z)
. (D.2)

Our convention for the perturbed FLRW metric is (Eq. (3.49))

g00(x, t) = −1 − 2)(x, t),

g0i (x, t) = 0,

gij (x, t) = a2(t)δij [1 + 2*(x, t)] . (D.3)
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The abundance of CDM collapsed structures

Angulo et al 2012 Despali et al 2015

Simulations resolve the mass range relevant for galaxy formation
If written in the adequate variables, the abundance is universalHalo abundance

• Mean number density of 
halos in logarithmic mass 
bins


• Power-law at small 
masses


• Exponential cutoff at 
high masses - reflecting 
Gaussian statistics of 
initial density field
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FIGURE 12.7 Illustration of spherical collapse. Imagine cutting out a sphere of matter from the otherwise homoge-
neous universe, and compressing it slightly. This region will now begin to collapse, maintaining the enclosed mass
M and the spherical geometry (left, showing a plane projection; the upper right plot shows the density profile as
a function of radius). The physical (rather than comoving) radius r(t) then evolves as the scale factor of an FLRW
universe with a larger density and positive curvature. The evolution of r(t) is shown in the lower right plot. At t = tta,
r(t) reaches turnaround and the region begins to collapse. Collapse r = 0 is reached at t ! 2tta.

the unperturbed universe encloses a mass M? The mean density enclosed within a spher-
ical region of comoving radius R is

ρm(t0) = "mρcr = M

4πR3/3
. (12.63)

This relation defines the Lagrangian radius RL associated with the mass M :

RL(M) = 1.40h−1 Mpc
(

M

1012 h−1 M#

)1/3

, (12.64)

where we used the value "m = 0.31 of the fiducial cosmology. The Hubble constant drops
out of this expression thanks to the units of h−1 Mpc and h−1 M#. RL is equivalent to R$

with $ = 1. So if we imagine assembling a halo of mass M ∼ 1012 h−1 M#, which is roughly
the Milky Way’s halo mass, from the uniform matter density, we have to collect matter from
within a comoving radius of about 1h−1 Mpc. Correspondingly, to form a massive halo
hosting a galaxy cluster with M ∼ 1015 h−1 M# we have to take matter from a region with ra-
dius 10h−1 Mpc. The name “Lagrangian radius” reflects what we just said: if we follow the
constituent particles of the halo back to the initial conditions, then RL(M) is roughly the
comoving size of the region that contains these particles, simply because the entire matter
density field was close to the mean density initially. The comparison with Eq. (12.61) shows
that RL(M$) = $1/3R$ for halos identified with an interior density of $ × ρm(t0).

Now let us go back to the evolution of an initially slightly overdense homogeneous
spherical region, with comoving radius RL. The first crucial observation is that the mass
M is conserved, since none of the matter in the interior can escape to the outside, nor can

Spherical collapse 
picture

• Consider isolated, uniform 
spherically symmetric 
overdense region (i.e. 
embedded in patch of 
unperturbed background)


• Can solve for evolution of this 
region exactly up until collapse!
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other material fall in; both of these are consequences of the spherically symmetric setup.
From the point of view of an observer inside the overdense region making local measure-
ments, this homogeneous region is indistinguishable from an FLRW universe with a higher
background density ρ̃m (marked by “F̃LRW” in Fig. 12.7). Let us then apply the second
Friedmann equation (3.90) to this region:

¨̃a
ã

= −4πG

3

[
ρ̃m + 3P

]
, (12.65)

where the dots refer to ordinary time derivatives as before and now ρ̃m and P are the ho-
mogeneous density and pressure within the region. The only source of pressure P is the
cosmological constant #, and this is the same as in the background universe. The physical
(not comoving) radius r(t) is proportional to the local scale factor within the overdensity,
so we obtain

r̈

r
= −4πG

3

[
M

4πr3(t)/3
− 2ρ#

]
. (12.66)

which becomes

r̈(t) = − GM

r2(t)
+ 8πG

3
ρ#r(t). (12.67)

This is just the Newtonian equation of motion for a spherical mass of radius r(t), aug-
mented with the repulsive force due to the accelerated expansion caused by the cosmo-
logical constant or dark energy (note the opposite sign of this force, and that it increases
with radius). Our initial condition for r(t) at the early time tin, where the overdensity of the
region is negligibly small, then is r(tin) = a(tin)RL, the factor of a resulting from the con-
version from comoving to physical radius. Similarly, ṙ(tin) = ȧ(tin)RL = H(tin)r(tin), i.e. the
region participates in the background Hubble flow.

Nothing stops us now from solving Eq. (12.67) numerically. However, if we drop the ρ#

term, then the equation is solvable analytically (see Exercise 12.9). The solution is para-
metric, that is, radius and time are given as functions of a parameter θ :

r(t) = rta

2
(1 − cos θ),

t = tta

π
(θ − sin θ). (12.68)

This solution is shown in the lower right panel of Fig. 12.7 and is straightforward to in-
terpret. Initially, r(t) is small and increasing since the region participates in the Hubble
expansion; recall that r is the physical radius. When t approaches the turnaround time tta,
ṙ goes through zero and becomes negative: the region begins to collapse. Collapse (r = 0)
occurs precisely at t = 2tta.

The parameters rta and tta depend on the size and initial overdensity of the region. Since
we are able to calculate the statistics of the density field at early times, when linear pertur-
bation theory applies, we would like to determine what initial overdensity is needed so that

Eq (12.67)
Newtonian equation (plus Λ term) for 
physical (not comoving) radius r(t)
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ical region of comoving radius R is
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. (12.63)

This relation defines the Lagrangian radius RL associated with the mass M :

RL(M) = 1.40h−1 Mpc
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M

1012 h−1 M#
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, (12.64)

where we used the value "m = 0.31 of the fiducial cosmology. The Hubble constant drops
out of this expression thanks to the units of h−1 Mpc and h−1 M#. RL is equivalent to R$

with $ = 1. So if we imagine assembling a halo of mass M ∼ 1012 h−1 M#, which is roughly
the Milky Way’s halo mass, from the uniform matter density, we have to collect matter from
within a comoving radius of about 1h−1 Mpc. Correspondingly, to form a massive halo
hosting a galaxy cluster with M ∼ 1015 h−1 M# we have to take matter from a region with ra-
dius 10h−1 Mpc. The name “Lagrangian radius” reflects what we just said: if we follow the
constituent particles of the halo back to the initial conditions, then RL(M) is roughly the
comoving size of the region that contains these particles, simply because the entire matter
density field was close to the mean density initially. The comparison with Eq. (12.61) shows
that RL(M$) = $1/3R$ for halos identified with an interior density of $ × ρm(t0).

Now let us go back to the evolution of an initially slightly overdense homogeneous
spherical region, with comoving radius RL. The first crucial observation is that the mass
M is conserved, since none of the matter in the interior can escape to the outside, nor can

Spherical collapse 
picture

• Parametric solution possible if we 
neglect Λ term:


• Can show that region of any size that 
collapses at a given time has linearly-
extrapolated initial over density of
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other material fall in; both of these are consequences of the spherically symmetric setup.
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This solution is shown in the lower right panel of Fig. 12.7 and is straightforward to in-
terpret. Initially, r(t) is small and increasing since the region participates in the Hubble
expansion; recall that r is the physical radius. When t approaches the turnaround time tta,
ṙ goes through zero and becomes negative: the region begins to collapse. Collapse (r = 0)
occurs precisely at t = 2tta.

The parameters rta and tta depend on the size and initial overdensity of the region. Since
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Spherical collapse and 
excursion set

• Region of any size that collapses at a given 
time has linearly-extrapolated initial over 
density of


• Basis for semi-analytic approach to halos: 


1. Compute linear density field δ(1)

2. Smooth on a scale R and identify which 
points lie above δcr

3. Identify those with future halos with mass 
RL(M) = R


• With some refinements to avoid double-
counting, known as excursion set approach


• Very rough, but useful to have in mind
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FIGURE 12.8 Inhomogeneities as a function of 1D position. Shown is the initial, linear density field including a
long-wavelength perturbation (red (mid gray in print version)) and the spherical collapse threshold δcr [Eq. (12.69)].
From Desjacques et al. (2018).

Notice that the integral only depends on the ratio δcr/σ (RL[M], z). The factor of 2 was in-
troduced by Press and Schechter (1974) as an ad hoc factor in order to recover the correct
normalization. In particular, the expectation is that, as R → 0, the variance diverges and
hence all of matter should be contained in a collapsed structure (even though spherical
collapse will not describe the formation of these low-mass objects correctly); that is, we
expect that

lim
M→0

Fcoll,PS(M,z) = 1. (12.71)

Without the prefactor 2 in Eq. (12.70), we would instead obtain 1/2. The “fudge factor” was
subsequently explained rigorously by Bond et al. (1991), who introduced the excursion-set
formalism.

We now need to transform the collapsed fraction into the halo mass function. The halo
mass function is simply the mean number density of matter multiplied by the fraction of
matter that has collapsed into a halo of mass M . Therefore,

dn(M,z)

d lnM
= ρm(t0)

M

∣∣∣∣
dFcoll,PS

d lnM

∣∣∣∣ . (12.72)

The factor 1/M in front comes about from converting the mass density in halos of mass
M (which is the equivalent of a volume fraction in Lagrangian space) to a number density.
Using Eq. (12.70), the result is

dn(M,z)

d lnM
= ρm(t0)

M
fPS

(
δcr

σ (M,z)

)∣∣∣∣
d lnσ (M,z)

d lnM

∣∣∣∣ , fPS(ν) =
√

2

π
νe−ν2/2, (12.73)

where we have abbreviated σ (M,z) ≡ σ (RL[M], z), as is standard in the literature.5 Massive
halos have σ (M,z) $ δcr, since the variance is small for large smoothing scales (Fig. 12.1).

5
Note that, in the literature, our fPS(ν) is also frequently defined with a factor ν outside, i.e. fPS(ν) → νfPS(ν).



From matter to galaxies
• So far, studied what happens to cold collisionless 

matter - but what about the gas and stars we actually 
observe?
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Galaxy formation in a 
nutshell

11

Simulated stars

Simulated gas

Illustris-TNG

• Generally, gas follows the DM component 
in its collapse until stopped by pressure


• Minimum collapsing object set by Jeans 
scale, which is function of temperature


• Gas begins to cool once it has collapsed 
to sufficient density so it can radiate away 
energy via collisional excitations - 
reducing Jeans scale and allowing further 
collapse


• Eventually stars form, as proto-galaxy 
continues to accrete gas


• Star formation regulated by balance of 
gravitational growth and feedback, due to 
radiation, heating, or ejected gas 
(Supernovae, massive black holes)

https://www.tng-project.org/media/
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• Eventually stars form, as proto-galaxy continues to accrete gas


• Star formation regulated by balance of gravitational growth and 
feedback, due to radiation, heating, or ejected gas (Supernovae, 
massive black holes)
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Models for galaxy 
clustering

• We cannot simulate galaxy formation realistically yet (and certainly not 
over cosmological volumes)


• One approach: attempt to populate halos with galaxies


• Halo occupation distribution (HOD): Ngal(halo) parametrized as 
function of halo mass


• Subhalo abundance matching (SHAM): populate mass-ordered halo 
substructure with galaxies


• Physically motivated, but difficult to quantify the error we are 
making with these simplifications


• Alternative: parametrize our ignorance and make minimal assumptions: 
EFT approach


• Minimal assumptions and controlled error - but restricted to large 
scales
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EFT approach to galaxy 
clustering

• Idea: follow treatment of perturbations to 
matter, as far as possible


• But we need to take into account that 
galaxies form out of baryons, and their 
number isn’t conserved!


• Start from perturbative expansion of 
fluctuations in galaxy number counts:
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to Eq. (12.29):

δg(x,η) = δ
(1)
g (x,η) + δ

(2)
g (x,η) + · · · + δ

(n)
g (x,η), (12.85)

where, as we now know, δ
(1)
g = b1δ

(1). A crucial difference from the case of the matter den-

sity field is that we have to identify which bias terms need to be included in δ
(n)
g , i.e. at a

given order in perturbation theory, in order to describe a general galaxy density field. As
described in detail in Sect. 2 of Desjacques et al. (2018), there is a rigorous theory behind
this, which we will not go into here. At second order, in δ

(2)
g , there are two bias terms: the

b2 term we encountered above, and another term involving the tidal field squared, pro-
portional to bK2(∂i∂j$)(∂ i∂j$) (see Exercise 12.12). The tidal field did not appear in the
thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):

δ
(n)
g (k,η) = Dn

+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]

(2π)3δ
(3)
D

(

k −
n∑

i=1

ki

)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1

2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1

3

]

. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):

〈
δg(k1,η)δg(k2,η)δg(k3,η)

〉
= (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

×
[
2Fg,2(k1,k2;η)PL(k1,η)PL(k2,η) + BN(k1,η) + 2 perm.

]
,

where

BN(k,η) = 1

3
BN0(η) + b1(η)PN,δ(η)PL(k,η) (12.89)

<latexit sha1_base64="Xe6PRQG6APDtD5k8cLm4ISm4iN8="></latexit>
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EFT approach to galaxy 
clustering

• Start from perturbative expansion of 
fluctuations in galaxy number counts:


• Goal: write galaxy density as a sum of 
observables (or operators; -> later) O 
multiplied by free bias coefficients:
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thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):

δ
(n)
g (k,η) = Dn

+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]

(2π)3δ
(3)
D

(

k −
n∑

i=1

ki

)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1

2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1

3

]

. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):

〈
δg(k1,η)δg(k2,η)δg(k3,η)

〉
= (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

×
[
2Fg,2(k1,k2;η)PL(k1,η)PL(k2,η) + BN(k1,η) + 2 perm.

]
,

where

BN(k,η) = 1

3
BN0(η) + b1(η)PN,δ(η)PL(k,η) (12.89)

<latexit sha1_base64="Xe6PRQG6APDtD5k8cLm4ISm4iN8="></latexit>

ng(x, ⌘)� n̄g(⌘)

n̄g(⌘)
=

<latexit sha1_base64="tIaOQmvBQXyspqzHP1mOs8glhXs="></latexit>

�g(x, ⌘) =
X

O

bO(⌘)O(x, ⌘)

At fixed order in perturbation theory, there should 
only be a finite number of these…



Spacetime view of galaxy 
formation

• Consider coarse-grained (large 
scale) view of region that forms a 
galaxy at conformal time τ

• Formation happens over long time 
scale, but small spatial scale R*

• For halos, expect


• Approximate galaxy formation as 
spatially local (on large scales)

R⇤ . RL
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Spacetime view of galaxy 
formation

17

time

space

• Leading gravitational 
observable is tidal field          
which includes density


• Along entire trajectory of 
forming galaxy
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Galaxy bias expansion
• Ignore time evolution for now


• Then, we have a local bias relation:


• Then, it is easy to write down bias expansion, at 
first, second, … order: 
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to Eq. (12.29):

δg(x,η) = δ
(1)
g (x,η) + δ

(2)
g (x,η) + · · · + δ

(n)
g (x,η), (12.85)

where, as we now know, δ
(1)
g = b1δ

(1). A crucial difference from the case of the matter den-

sity field is that we have to identify which bias terms need to be included in δ
(n)
g , i.e. at a

given order in perturbation theory, in order to describe a general galaxy density field. As
described in detail in Sect. 2 of Desjacques et al. (2018), there is a rigorous theory behind
this, which we will not go into here. At second order, in δ

(2)
g , there are two bias terms: the

b2 term we encountered above, and another term involving the tidal field squared, pro-
portional to bK2(∂i∂j$)(∂ i∂j$) (see Exercise 12.12). The tidal field did not appear in the
thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):
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[
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∫
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)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1

2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1

3

]

. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):

〈
δg(k1,η)δg(k2,η)δg(k3,η)

〉
= (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

×
[
2Fg,2(k1,k2;η)PL(k1,η)PL(k2,η) + BN(k1,η) + 2 perm.

]
,

where

BN(k,η) = 1

3
BN0(η) + b1(η)PN,δ(η)PL(k,η) (12.89)
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• Continue to approximate galaxy 
density as a local function in space

• We are then left with nonlinear, 
nonlocal-in-time functional of tidal 
tensor:

ng(x, ⌧) = Fg [@i@j�(xfl(⌧
0), ⌧ 0)]

x = xfl(⌧)

xfl(⌧
0)

Non-locality in time
19
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• Nonlocality in time seems like a major 
problem!


• But the scale-free nature of gravity comes 
to the rescue


• Consider linear density term:


• At linear order: growth is scale-invariant

• Integral simply becomes

ng(x, ⌧) = Fg [@i@j�(xfl(⌧
0), ⌧ 0)]

xfl(⌧
0)

Non-locality in time

ng(x, ⌧) =

Z ⌧

0
d⌧ 0 fg,�(⌧, ⌧

0)�(xfl(⌧
0), ⌧ 0)
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• Nonlocality in time seems like a major 
problem!


• But the scale-free nature of gravity comes 
to the rescue


• Consider linear density term:


• At linear order: growth is scale-invariant
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• But the scale-free nature of gravity comes 
to the rescue


• Consider linear density term:


• At linear order: growth is scale-invariant
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• We can similarly deal with non 
locality in time at higher order, 
since expansion continues to 
factorize:


• Allows us to obtain a complete 
expansion of galaxy density field:

ng(x, ⌧) = Fg [@i@j�(xfl(⌧
0), ⌧ 0)]

xfl(⌧
0)

Non-locality in time

�(x, ⌧) = D(⌧)�(1)(x) +D2(⌧)�(2)(x) + · · ·
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Spatial nonlocality and 
scale-dependent bias

• Beyond large-scale limit: need to expand 
spatial nonlocality of galaxy formation


• Higher derivative biases are suppressed 
with scale R*

• E.g., 


• This also allows for baryonic physics, 
which has to come with additional derivatives

• Example: pressure perturbations


• Pressure force:


• At higher order in derivatives, time 
evolution no longer determined by gravity 
alone

R2
⇤r2�, R2

⇤(r�)2, R2
⇤r2(sij)

2, · · ·�g(k, ⌧) =
�
b1 + br2�k

2R2
⇤
�
�(k, ⌧)

�p = c2s�⇢
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Spatial nonlocality and 
scale-dependent bias

• Beyond large-scale limit: need to expand 
spatial nonlocality of galaxy formation


• Higher derivative biases are suppressed 
with scale R*

• E.g., 


• This also allows for baryonic physics, 
which has to come with additional derivatives

• Example: pressure perturbations


• Pressure force:


• Identical in form to effective sound speed 
in matter we encountered before

R2
⇤r2�, R2

⇤(r�)2, R2
⇤r2(sij)

2, · · ·�g(k, ⌧) =
�
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⇤
�
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EFT approach in LSS

• Effective field theory: write down all terms (in 
Lagrangian or equations of motion) that are 
consistent with symmetries


• Gravity: general covariance


• Galaxy density: 0-component of 4-vector 
(momentum density)


• Order contributions by perturbative order, and 
number of spatial derivatives (gradient expansion) 
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• Effective field theory: write down all terms (in 
Lagrangian or equations of motion) that are 
consistent with symmetries


• Gravity: general covariance


• Galaxy density: 0-component of 4-vector 
(momentum density)


• Order contributions by perturbative order, and 
number of spatial derivatives (gradient expansion) 
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EFT approach in LSS

• For large-scale structure (LSS), general 
covariance boils down to the statement that    
and    cannot appear in bias expansion

• In other words, leading gravitational 
observable is tidal field including density, like 
we did above


• Since we take into account entire evolution,                
are already incorporated as they can be 
obtained from Euler equation

v
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Chapter 12 • Growth of structure: beyond linear theory 361

One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
δ
(1)
R (x + r) > δcr, δ

(1)
R (x) > δcr

)

[p(δ
(1)
R (x) > δcr)]2

− 1. (12.82)

Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ

(1)
R (r) + 1

2
(bthr

2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):

Pg,thr(k) = (bthr
1 )2PL(k)W 2

R(k)

+ 1

2
(bthr

2 )2
∫

d3p

(2π)3
PL(p)W 2

R(p)PL(|k − p|)W 2
R(|k − p|)

+ · · · , (12.84)

where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy

Appendix C • Special functions 471

The Riemann zeta function is useful for evaluating integrals in statistical mechanics. In
particular,

ζ(s) = 1

"(s)

∫ ∞

0
dx

xs−1

ex − 1
= 1

(1 − 21−s)"(s)

∫ ∞

0
dx

xs−1

ex + 1
. (C.29)

The cases we encounter in this book are

ζ(2) = π2

6
; ζ(3) = 1.202; ζ(4) = π4

90
. (C.30)

When dealing with Gaussian random fields, one often encounters the error function erf,
the incomplete integral over the Gaussian distribution, and its complement, erfc:

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
due−u2

. (C.31)

The cosine and sine integrals appear when computing the Fourier transform of the
NFW halo profile:

Ci(x) = −
∫ ∞

x

cos z

z
dz, (C.32)

Si(x) =
∫ x

0

sin z

z
dz. (C.33)
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
δ
(1)
R (x + r) > δcr, δ

(1)
R (x) > δcr

)

[p(δ
(1)
R (x) > δcr)]2

− 1. (12.82)

Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ

(1)
R (r) + 1

2
(bthr

2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):

Pg,thr(k) = (bthr
1 )2PL(k)W 2

R(k)

+ 1

2
(bthr

2 )2
∫

d3p

(2π)3
PL(p)W 2

R(p)PL(|k − p|)W 2
R(|k − p|)

+ · · · , (12.84)

where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.

Physical picture of bias
• Spherical collapse model: 

halos form in regions of 
smoothed initial density field 
that are above collapse 
threshold


• High excursions of Gaussian 
random field are more 
clustered than field itself


• Can be calculated by 
considering definition of 
correlation function 
(homework):
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FIGURE 12.8 Inhomogeneities as a function of 1D position. Shown is the initial, linear density field including a
long-wavelength perturbation (red (mid gray in print version)) and the spherical collapse threshold δcr [Eq. (12.69)].
From Desjacques et al. (2018).

Notice that the integral only depends on the ratio δcr/σ (RL[M], z). The factor of 2 was in-
troduced by Press and Schechter (1974) as an ad hoc factor in order to recover the correct
normalization. In particular, the expectation is that, as R → 0, the variance diverges and
hence all of matter should be contained in a collapsed structure (even though spherical
collapse will not describe the formation of these low-mass objects correctly); that is, we
expect that

lim
M→0

Fcoll,PS(M,z) = 1. (12.71)

Without the prefactor 2 in Eq. (12.70), we would instead obtain 1/2. The “fudge factor” was
subsequently explained rigorously by Bond et al. (1991), who introduced the excursion-set
formalism.

We now need to transform the collapsed fraction into the halo mass function. The halo
mass function is simply the mean number density of matter multiplied by the fraction of
matter that has collapsed into a halo of mass M . Therefore,

dn(M,z)

d lnM
= ρm(t0)

M

∣∣∣∣
dFcoll,PS

d lnM

∣∣∣∣ . (12.72)

The factor 1/M in front comes about from converting the mass density in halos of mass
M (which is the equivalent of a volume fraction in Lagrangian space) to a number density.
Using Eq. (12.70), the result is

dn(M,z)

d lnM
= ρm(t0)

M
fPS

(
δcr

σ (M,z)

)∣∣∣∣
d lnσ (M,z)

d lnM

∣∣∣∣ , fPS(ν) =
√

2

π
νe−ν2/2, (12.73)

where we have abbreviated σ (M,z) ≡ σ (RL[M], z), as is standard in the literature.5 Massive
halos have σ (M,z) $ δcr, since the variance is small for large smoothing scales (Fig. 12.1).

5
Note that, in the literature, our fPS(ν) is also frequently defined with a factor ν outside, i.e. fPS(ν) → νfPS(ν).
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
δ
(1)
R (x + r) > δcr, δ

(1)
R (x) > δcr

)

[p(δ
(1)
R (x) > δcr)]2

− 1. (12.82)

Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ

(1)
R (r) + 1

2
(bthr

2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):

Pg,thr(k) = (bthr
1 )2PL(k)W 2

R(k)

+ 1

2
(bthr
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∫

d3p

(2π)3
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+ · · · , (12.84)

where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy

Appendix C • Special functions 471

The Riemann zeta function is useful for evaluating integrals in statistical mechanics. In
particular,

ζ(s) = 1
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When dealing with Gaussian random fields, one often encounters the error function erf,
the incomplete integral over the Gaussian distribution, and its complement, erfc:

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
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. (C.31)

The cosine and sine integrals appear when computing the Fourier transform of the
NFW halo profile:

Ci(x) = −
∫ ∞
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Si(x) =
∫ x

0

sin z

z
dz. (C.33)
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
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R (x + r) > δcr, δ
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)

[p(δ
(1)
R (x) > δcr)]2
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Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ
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2
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2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):

Pg,thr(k) = (bthr
1 )2PL(k)W 2

R(k)

+ 1

2
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∫

d3p

(2π)3
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where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.

Physical picture of bias
• Spherical collapse model: 

halos form in regions of 
smoothed initial density field 
that are above collapse 
threshold


• High excursions of Gaussian 
random field are more 
clustered than field itself
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FIGURE 12.8 Inhomogeneities as a function of 1D position. Shown is the initial, linear density field including a
long-wavelength perturbation (red (mid gray in print version)) and the spherical collapse threshold δcr [Eq. (12.69)].
From Desjacques et al. (2018).

Notice that the integral only depends on the ratio δcr/σ (RL[M], z). The factor of 2 was in-
troduced by Press and Schechter (1974) as an ad hoc factor in order to recover the correct
normalization. In particular, the expectation is that, as R → 0, the variance diverges and
hence all of matter should be contained in a collapsed structure (even though spherical
collapse will not describe the formation of these low-mass objects correctly); that is, we
expect that

lim
M→0

Fcoll,PS(M,z) = 1. (12.71)

Without the prefactor 2 in Eq. (12.70), we would instead obtain 1/2. The “fudge factor” was
subsequently explained rigorously by Bond et al. (1991), who introduced the excursion-set
formalism.

We now need to transform the collapsed fraction into the halo mass function. The halo
mass function is simply the mean number density of matter multiplied by the fraction of
matter that has collapsed into a halo of mass M . Therefore,

dn(M,z)

d lnM
= ρm(t0)

M

∣∣∣∣
dFcoll,PS

d lnM

∣∣∣∣ . (12.72)

The factor 1/M in front comes about from converting the mass density in halos of mass
M (which is the equivalent of a volume fraction in Lagrangian space) to a number density.
Using Eq. (12.70), the result is

dn(M,z)

d lnM
= ρm(t0)

M
fPS

(
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σ (M,z)

)∣∣∣∣
d lnσ (M,z)
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∣∣∣∣ , fPS(ν) =
√
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νe−ν2/2, (12.73)

where we have abbreviated σ (M,z) ≡ σ (RL[M], z), as is standard in the literature.5 Massive
halos have σ (M,z) $ δcr, since the variance is small for large smoothing scales (Fig. 12.1).

5
Note that, in the literature, our fPS(ν) is also frequently defined with a factor ν outside, i.e. fPS(ν) → νfPS(ν).
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:

ξthr(r) =
p
(
δ
(1)
R (x + r) > δcr, δ

(1)
R (x) > δcr

)

[p(δ
(1)
R (x) > δcr)]2

− 1. (12.82)

Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion

ξthr(r) = (bthr
1 )2ξ

(1)
R (r) + 1

2
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2 )2[ξ (1)
R (r)]2 + · · · , (12.83)

where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):
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where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy
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When dealing with Gaussian random fields, one often encounters the error function erf,
the incomplete integral over the Gaussian distribution, and its complement, erfc:

erfc(x) = 1 − erf(x) = 2√
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The cosine and sine integrals appear when computing the Fourier transform of the
NFW halo profile:
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One approach is to follow the toy model that led us to Eq. (12.70) and Eq. (12.73): we as-
sume that halos correspond to regions in the initial conditions that are above the collapse
threshold δcr when smoothed on the Lagrangian radius of the halo. Now, the correlation
function of regions above the threshold δcr at the separation r is defined as the excess
probability of finding a region above threshold at a distance r from another region above
threshold:
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Here and in the following, we again suppress the time arguments for clarity. Since the linear
density field follows a multivariate Gaussian distribution, all of these probabilities can be
written down analytically. In Exercise 12.10 you will perform this calculation, and show
that the result can be written as a series expansion
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where ξ
(1)
R is the correlation function of the linear matter density field smoothed on the

scale R, and the dots stand for higher-order terms that involve three and more powers
of the correlation function. bthr

1 is analogous to the linear bias coefficient we have derived
above: the correlation function of regions above threshold is proportional to that of matter.
The second term in the expansion involves a new bias parameter, the second-order bias
bthr

2 (it corresponds to the coefficient we would obtain if we expanded to second order in δ#

in Eq. (12.78); see Exercise 12.11). The precise values of these coefficients are less important
than the form of the terms we see in Eq. (12.83): if we work on sufficiently large scales r so
that ξ

(1)
R (r) " 1, then the higher-order bias terms are small corrections to linear bias. This

justifies our linear bias treatment in Ch. 11.
The simple thresholding picture will not describe the actual galaxies whose power spec-

trum we measure observationally, but it gives us useful hints. Using the techniques we
learned in Sect. 12.2, it is straightforward to obtain the Fourier-space version of Eq. (12.83):
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where WR(k) is the filtering kernel in Fourier space (see Eq. (12.4)). We can set this kernel
to 1 on large scales, i.e. when k " 1/R. Comparing Eq. (12.84) to Eq. (12.49), we see that the
second-order bias contribution is of similar form, and hence of the same order (if bthr

2 is of
order unity), as the next-to-leading order contribution P (22)(k) to the matter power spec-
trum in perturbation theory. This suggests that we can incorporate the bias expansion for
galaxies into perturbation theory, by expanding the galaxy density perturbation in analogy

Equation numbers refer to Modern Cosmology, second edition.

However, the relevant ones are given either here, or in the lecture slides.
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FIGURE 12.8 Inhomogeneities as a function of 1D position. Shown is the initial, linear density field including a
long-wavelength perturbation (red (mid gray in print version)) and the spherical collapse threshold δcr [Eq. (12.69)].
From Desjacques et al. (2018).

Notice that the integral only depends on the ratio δcr/σ (RL[M], z). The factor of 2 was in-
troduced by Press and Schechter (1974) as an ad hoc factor in order to recover the correct
normalization. In particular, the expectation is that, as R → 0, the variance diverges and
hence all of matter should be contained in a collapsed structure (even though spherical
collapse will not describe the formation of these low-mass objects correctly); that is, we
expect that

lim
M→0

Fcoll,PS(M,z) = 1. (12.71)

Without the prefactor 2 in Eq. (12.70), we would instead obtain 1/2. The “fudge factor” was
subsequently explained rigorously by Bond et al. (1991), who introduced the excursion-set
formalism.

We now need to transform the collapsed fraction into the halo mass function. The halo
mass function is simply the mean number density of matter multiplied by the fraction of
matter that has collapsed into a halo of mass M . Therefore,

dn(M,z)

d lnM
= ρm(t0)

M

∣∣∣∣
dFcoll,PS

d lnM

∣∣∣∣ . (12.72)

The factor 1/M in front comes about from converting the mass density in halos of mass
M (which is the equivalent of a volume fraction in Lagrangian space) to a number density.
Using Eq. (12.70), the result is

dn(M,z)

d lnM
= ρm(t0)
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where we have abbreviated σ (M,z) ≡ σ (RL[M], z), as is standard in the literature.5 Massive
halos have σ (M,z) $ δcr, since the variance is small for large smoothing scales (Fig. 12.1).

5
Note that, in the literature, our fPS(ν) is also frequently defined with a factor ν outside, i.e. fPS(ν) → νfPS(ν).
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• The picture is not complete yet, since this relation can 
only hold in a “mean-field” sense


• Small-scale perturbations introduce stochasticity ε 
(and higher-order terms)


• Cannot predict ε as field, but know the form of 
statistics:

• In the end, stochasticity reduces to fixed number of 
additional free parameters

Complete bias expansion

h"(k)"⇤(k0)i = (2⇡)3�D(k � k0)
h
P" + k2P {2}

" + · · ·
i
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From bias expansion to 
statistics

• Once we have bias expansion, we can derive 
PT kernels for galaxies, and hence galaxy 
statistics, as a function of the bias parameters:
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to Eq. (12.29):

δg(x,η) = δ
(1)
g (x,η) + δ

(2)
g (x,η) + · · · + δ

(n)
g (x,η), (12.85)

where, as we now know, δ
(1)
g = b1δ

(1). A crucial difference from the case of the matter den-

sity field is that we have to identify which bias terms need to be included in δ
(n)
g , i.e. at a

given order in perturbation theory, in order to describe a general galaxy density field. As
described in detail in Sect. 2 of Desjacques et al. (2018), there is a rigorous theory behind
this, which we will not go into here. At second order, in δ

(2)
g , there are two bias terms: the

b2 term we encountered above, and another term involving the tidal field squared, pro-
portional to bK2(∂i∂j$)(∂ i∂j$) (see Exercise 12.12). The tidal field did not appear in the
thresholding toy model, since we assumed that the halo density only depends on the local
value of the matter density. In reality, halo and galaxy formation are influenced by large-
scale tidal fields, so we have to include them in the bias relation.

Just as we did for the matter density field based on Eq. (12.29), we can use Eq. (12.85) to
expand the galaxy density field in Fourier space by defining kernels Fg,n in analogy to the
Fn for matter, Eq. (12.40):

δ
(n)
g (k,η) = Dn

+(η)

[
n∏

i=1

∫
d3ki

(2π)3

]

(2π)3δ
(3)
D

(

k −
n∑

i=1

ki

)

× Fg,n(k1, · · · ,kn;η)δ0(k1) · · · δ0(kn). (12.86)

For example, you can show in Exercise 12.12 that the second-order kernel is given by

Fg,2(k1,k2;η) = b1(η)F2(k1,k2) + 1

2
b2(η) + bK2(η)

[
(k1 · k2)

2

k2
1k2

2

− 1

3

]

. (12.87)

Since the bias parameter b1 multiplies the matter density field, which itself has nonlinear
contributions, we obtain a term b1F2 in Fg,2. Further, b2 appears as expected, in addition
to the tidal bias parameter bK2 . For halos of a given mass, b1 and b2 can be obtained from
the peak-background split described above. For observed galaxies, these coefficients need
to be determined from the data, by measuring their statistics such as the galaxy power
spectrum.

Based on Eqs. (12.85)–(12.86), all calculational techniques, including diagrams, that we
developed for matter in Sect. 12.2 carry over to galaxies. The bispectrum of galaxies, for
example, can be derived in analogy to Eq. (12.51):

〈
δg(k1,η)δg(k2,η)δg(k3,η)

〉
= (2π)3δ

(3)
D (k1 + k2 + k3) (12.88)

×
[
2Fg,2(k1,k2;η)PL(k1,η)PL(k2,η) + BN(k1,η) + 2 perm.

]
,

where

BN(k,η) = 1

3
BN0(η) + b1(η)PN,δ(η)PL(k,η) (12.89)
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For example (see homework):

Eq (12.87)
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Application: galaxy 
power spectrum

• Assume we can measure rest-frame galaxy density


• That is, neglect redshift-space distortions and other projection effects


• Leading-order (galaxy) power spectrum at fixed 
time:


• 2 free parameters


• Noise term is often approximated as Poisson, 
but not accurate in general.

di�cult, since measurements of higher-order statistics become necessary, for instance the trispectrum in
the case of cubic-order bias parameters. The implementation and the required computational resources for
higher-order statistics become increasingly demanding.

Since this is a substantial subsection, we provide a brief outline here. We begin with the leading two-
and three-point functions in Eulerian space, both in the Fourier- and real-space representations (Sec. 4.1.1).
We then briefly discuss the corresponding results in Lagrangian space (Sec. 4.1.2), which are relevant for
estimating bias parameters from halos identified in N-body simulations. Sec. 4.1.3 then provides a quantita-
tive, albeit simplified and idealized, forecast of the ability of current and future galaxy surveys to measure
the bias parameters and amplitude of the matter power spectrum using the results of Sec. 4.1.1. Next, we
derive the next-to-leading correction to the galaxy two-point function (1-loop power spectrum) in Sec. 4.1.4,
illustrating how the predictions of Sec. 4.1.1 can be taken to higher order and what scalings the higher-order
terms obey.

4.1.1 Two- and three-point functions at leading order
We begin with the leading-order (LO), or tree-level, predictions for the power spectrum and bispectrum of

halos, that is, the two- and three-point correlation functions in Fourier space. The leading-order calculation
of the halo power spectrum and bispectrum requires, respectively, linear- and second-order perturbation
theory (see Appendix B). These leading-order predictions are accurate on su�ciently large scales, roughly
at the level of 10% for k . 0.03hMpc�1 in Fourier space at z = 0 (a more precise calculation is the subject
of Sec. 4.1.4); the range increases at higher redshifts [100]. We will present the corresponding real-space
results, the correlation functions, at the end of this section.

The halo auto-power spectrum and halo-matter cross-power spectrum are given by

P lo
hh(k) ⌘ h�h(k)�h(k0)i0lo = b2

1
PL(k) + P {0}

"

P lo
hm(k) ⌘ h�h(k)�m(k0)i0lo = b1PL(k) , (4.2)

where, here and throughout, a prime on an expectation value denotes that the momentum-conserving Dirac
delta, (2⇡)3�D(k+k

0) in case of Eq. (4.2), is to be dropped (see Tab. 2). As mentioned in the introduction,
we drop the time argument throughout this section for clarity. Again, we would obtain the same relation
for galaxies if we were able to measure their proper rest-frame density at the true physical position, that

is, without redshift-space distortions and other projection e↵ects. P {0}

" = limk!0h"(k)"(k0)i0 is the scale-
independent large-scale stochastic contribution [see Eq. (2.83) in Sec. 2.8]. Note that this is a renormalized
stochastic term which absorbs scale-independent terms from higher loop integrals (see Sec. 4.1.4). We will

discuss P {0}

" in more detail in Sec. 4.5.3. The next-to-leading-order corrections to Phh(k) as well as Phm(k)
from nonlinear evolution of both matter and bias, and from higher-derivative biases, will be described in
Sec. 4.1.4.

Since the halo stochasticity contributes to the halo auto-power spectrum Phh(k) but not to the halo-
matter cross-power spectrum Phm(k), the latter o↵ers the simplest and cleanest measurement of the linear
bias parameter b1 for halos (see e.g. [228, 229, 125]). This technique can also be applied to galaxies,
by measuring the matter distribution through weak gravitational lensing, specifically, the cross-correlation
(“galaxy-galaxy lensing”) of the projected galaxy density with the tangential shear measured from source
galaxies at higher redshifts [93, 230, 231, 232, 233, 234] (see [235] for a recent review). Briefly, for lens galaxies
at a known comoving distance �L and source galaxies following a normalized redshift distribution p(z), the
stacked tangential shear around galaxies in angular multipole space corresponds to a projection of the real-
space galaxy-matter power spectrum, Pgm = b1Pmm at leading order, given in the Limber approximation
[236] by

Cg�(l) =
3

2
⌦m0H

2

0

Z
dz p(z)

�(z)� �L

�(z)

�
1 + z(�L)

�L
Pgm

 
k =

p
l(l + 1)

�L
, z(�L)

!
. (4.3)

By itself, this observable su↵ers from a degeneracy between b1 and the matter power spectrum normalization.
This degeneracy can be broken by including the projected auto-correlation of galaxies Cgg(l), and/or the
cosmic shear power spectrum C��(l), as recently applied in [237, 31].
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• Next-to-leading order (NLO): involve 2 additional 
quadratic, 1 cubic, and 2 higher-derivative parameters


• Quadratic and cubic terms scale like


• Controlled by shape of P(k) and nonlinear scale


• Higher-derivative contributions scale as


• Obviously, NLO corrections become important toward 
smaller scales (higher k)


• Importantly: Two independent expansion parameters!

Application: galaxy 
power spectrum

disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,

PL(k) ⇡
2⇡2

k3nl

✓
k

knl

◆n

, (4.25)

where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,

I [�2,�2]

PL(k)
= 2

✓
k

knl

◆3+n Z 1

�1

dµ

2

Z
1

0

x2dx
h⇣

x
p

1 + x2 � 2xµ
⌘n

� x2n
i
. (4.26)

While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,

✏loop ⌘
✓

k

knl

◆3+n

⇡
✓

k

0.25hMpc�1

◆1.3

, and ✏deriv. ⌘ k2R2

⇤
. (4.27)

Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2

loop
, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4

⇤
, k6R6

⇤
, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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directly connected to a propagator (linear power spectrum).26

3. Propagators are represented as vertices with 2 outgoing lines of opposite momentum±k,
PL(k)

�k k

,

and they are assigned a factor PL(k).

4. All momenta that are not fixed in terms of momentum constraints are integrated over via

Z

p
⌘

Z
d3p

(2⇡)3
. (B.24)

A diagram without any loop integral is said to be a leading-order (LO), or tree-level diagram.

5. Each diagram is multiplied by the symmetry factor, which accounts for the number of all nonequivalent
labelings of external lines and degenerate configurations of the diagram.

As an example, the NLO contribution to the matter power spectrum [Eq. (B.18)] can be represented as:

P nlo
mm(k) = P (22)

mm (k) + 2P (13)

mm (k) =
F2 F2

+
F3

. (B.25)

Appendix B.3 E↵ective field theory and the nonlinear scale

The pressureless fluid equations Eqs. (B.1)–(B.2) that we have considered so far are not strictly correct,
as they neither take into account shell crossing of the dark matter, nor the presence of pressure in the
baryonic component. In reality, dark matter is governed by the collisionless Boltzmann, or Vlasov equation,
which predicts that multi-streaming occurs on small scales. Indeed, Eqs. (B.1)–(B.2) are obtained from the
Vlasov equation by truncating the hierarchy of velocity moments, and dropping the second- and higher-order
moments, which contain the e↵ective pressure and anisotropic stress. The pressure of the baryon fluid, on
the other hand, cannot be neglected on small scales. The E↵ective Field Theory approach to Large-Scale
Structure (EFTofLSS [83, 84]) provides a rigorous approach to take into account these beyond-pressureless-
perfect-fluid contributions from small-scale perturbations. Essentially, this can be seen as a bias expansion
for a specific tracer that obeys stress-energy conservation. The latter in fact ensures that Eqs. (B.1)–(B.2)
are only corrected by higher-derivative contributions.

The derivation of the EFT contributions proceeds by smoothing the density �⇤(x, ⌧) and velocity v⇤(x, ⌧)
fields on the arbitrary scale ⇤, retaining only modes k . ⇤ (see Sec. 2.10). While this erases the small-scale
perturbations, the latter contribute stochastic terms, and moreover are modulated by �⇤ and v⇤, leading to
additional long-wavelength contributions. In the end, one obtains a contribution �@j⌧ ij/⇢m on the right-
hand-side of the Euler equation, where the e↵ective stress tensor ⌧ij captures the pressure and viscosity forces
induced by the small-scale fluctuations. Expanding this to leading order in the large-scale fluctuations, the
e↵ective stress tensor can be written as [83, 84]

[⌧ij ]⇤ = pe↵(⇤)�ij + ⇢m


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(B.26)
Here, pe↵ , cs, cbv, csv are, respectively, e↵ective pressure, adiabatic sound speed, bulk viscosity coe�cient,
and shear viscosity coe�cient, which depend on ⇤. Note that pe↵ leads to a stochastic contribution to the
matter velocity vi(k) which in Fourier space is proportional to iki (see also Sec. 2.8). Since the quantities
cs, cbv, csv are due to the dependence of the small-scale density and velocity fields on the large-scale en-

26This is because diagrams that involve interaction vertices directly connected to each other are absorbed into higher-order
interaction vertices.
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Figure 12: Left panel: illustration of halo auto- (red, top line) and cross-power spectra (green, middle line), and the matter
power spectrum (blue, bottom line) at z = 0. The solid lines show the total LO plus NLO result, while the dashed curves
show the LO (linear) prediction only. The bias parameters used here are b1 = 1.50, b2 = �0.69, and bK2 = �0.14, as in
Tab. 6, while br2� = R2

⇤ with R⇤ = 2.61h�1 Mpc. btd = 23/42(b1 � 1) is taken from the Lagrangian LIMD prediction

(Sec. 2.4). The stochastic amplitudes are taken from the Poisson expectation, P
{0}
" = 1/nh and P

{2}
" = �R2

⇤/nh, with

nh = 1.41 · 10�4(h�1 Mpc)�3. We have set P
{2}
""m = 0 in P nlo

hm (k). Right panel: fractional size of the NLO contributions to
the matter and halo-matter cross-power spectrum at z = 0. The red dashed line shows the result for Phm(k) for the fiducial
bias parameters given above. The di↵erent shaded areas around P nlo

hm show the e↵ect of rescaling the various bias parameters
by a factor in the range [0.5, 2]. Clearly, the contributions from di↵erent bias parameters exhibit similar dependencies on k,
and are in general di�cult to disentangle using only the power spectrum. The perturbative description is expected to fail for
k & 0.25hMpc�1, where P nlo

mm(k) becomes as large as the LO prediction PL(k).

We will return to this in Sec. 4.5.3. It is often assumed that there is no stochastic contribution to the
halo-matter cross-power spectrum. However, this is only true at lowest order. The nonlinear small-scale
modes of the density field are responsible for both the halo stochasticity " and the stochastic contribution
to the matter density field "m, which, as discussed in Appendix B.3, is due to the e↵ective pressure of the
nonlinear matter fluctuations and scales as k2 in the low-k limit. Hence, one has to allow for a correlation

between the two stochastic fields, leading to the term k2P {2}

""m in P nlo
hm , which is comparable to the other

NLO contributions. Note that it could be either positive or negative.
The magnitude and scale dependence of the NLO corrections to the halo and matter power spectra is

shown in Fig. 12. As expected, we see that the corrections become increasingly important towards smaller
scales (higher k). We see a particularly steep suppression of Phh(k), which, for our fiducial parameters, is

dominated by the higher-derivative stochastic contribution k2P {2}

" . The right panel of Fig. 12 shows the
fractional size of the NLO correction to Pmm(k) and Phm(k). Depending on the value of the various bias
and stochastic parameters, the NLO correction could be either positive or negative (shaded regions), and
cancellations between the di↵erent NLO contributions can occur. In any case, as soon as the fractional
size of the NLO correction approaches order unity, we expect that higher-order loop contributions which we
have not included become comparable to P nlo

hm (k) as well, and hence the perturbative expansion ceases to
converge.

The NLO halo-matter power spectrum adds five additional free parameters to the ones present at leading

order (b1, P
{0}

" ). These can, in principle, be disentangled due to the di↵erent scale dependence of each term.
However, as illustrated in Fig. 12, these scale dependences are su�ciently similar that it is di�cult to
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• Next-to-leading order (NLO): involve 2 additional 
quadratic, 1 cubic, and 2 higher-derivative parameters


• Quadratic and cubic terms scale like


• Controlled by shape of P(k) and nonlinear scale


• Higher-derivative contributions scale as


• Obviously, NLO corrections become important toward 
smaller scales (higher k)


• Importantly: Two independent expansion parameters!

Application: galaxy 
power spectrum

disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,

PL(k) ⇡
2⇡2

k3nl

✓
k

knl

◆n

, (4.25)

where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,
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While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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, and ✏deriv. ⌘ k2R2
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2

loop
, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4

⇤
, k6R6

⇤
, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,
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where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,
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While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2
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, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4
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, k6R6
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, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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directly connected to a propagator (linear power spectrum).26

3. Propagators are represented as vertices with 2 outgoing lines of opposite momentum±k,
PL(k)

�k k

,

and they are assigned a factor PL(k).

4. All momenta that are not fixed in terms of momentum constraints are integrated over via

Z

p
⌘

Z
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(2⇡)3
. (B.24)

A diagram without any loop integral is said to be a leading-order (LO), or tree-level diagram.

5. Each diagram is multiplied by the symmetry factor, which accounts for the number of all nonequivalent
labelings of external lines and degenerate configurations of the diagram.

As an example, the NLO contribution to the matter power spectrum [Eq. (B.18)] can be represented as:

P nlo
mm(k) = P (22)

mm (k) + 2P (13)

mm (k) =
F2 F2

+
F3

. (B.25)

Appendix B.3 E↵ective field theory and the nonlinear scale

The pressureless fluid equations Eqs. (B.1)–(B.2) that we have considered so far are not strictly correct,
as they neither take into account shell crossing of the dark matter, nor the presence of pressure in the
baryonic component. In reality, dark matter is governed by the collisionless Boltzmann, or Vlasov equation,
which predicts that multi-streaming occurs on small scales. Indeed, Eqs. (B.1)–(B.2) are obtained from the
Vlasov equation by truncating the hierarchy of velocity moments, and dropping the second- and higher-order
moments, which contain the e↵ective pressure and anisotropic stress. The pressure of the baryon fluid, on
the other hand, cannot be neglected on small scales. The E↵ective Field Theory approach to Large-Scale
Structure (EFTofLSS [83, 84]) provides a rigorous approach to take into account these beyond-pressureless-
perfect-fluid contributions from small-scale perturbations. Essentially, this can be seen as a bias expansion
for a specific tracer that obeys stress-energy conservation. The latter in fact ensures that Eqs. (B.1)–(B.2)
are only corrected by higher-derivative contributions.

The derivation of the EFT contributions proceeds by smoothing the density �⇤(x, ⌧) and velocity v⇤(x, ⌧)
fields on the arbitrary scale ⇤, retaining only modes k . ⇤ (see Sec. 2.10). While this erases the small-scale
perturbations, the latter contribute stochastic terms, and moreover are modulated by �⇤ and v⇤, leading to
additional long-wavelength contributions. In the end, one obtains a contribution �@j⌧ ij/⇢m on the right-
hand-side of the Euler equation, where the e↵ective stress tensor ⌧ij captures the pressure and viscosity forces
induced by the small-scale fluctuations. Expanding this to leading order in the large-scale fluctuations, the
e↵ective stress tensor can be written as [83, 84]
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(B.26)
Here, pe↵ , cs, cbv, csv are, respectively, e↵ective pressure, adiabatic sound speed, bulk viscosity coe�cient,
and shear viscosity coe�cient, which depend on ⇤. Note that pe↵ leads to a stochastic contribution to the
matter velocity vi(k) which in Fourier space is proportional to iki (see also Sec. 2.8). Since the quantities
cs, cbv, csv are due to the dependence of the small-scale density and velocity fields on the large-scale en-

26This is because diagrams that involve interaction vertices directly connected to each other are absorbed into higher-order
interaction vertices.
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• Next-to-leading order (NLO): involve 2 additional 
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• Quadratic and cubic terms scale like


• Controlled by shape of P(k) and nonlinear scale


• Higher-derivative contributions scale as


• Obviously, NLO corrections become important toward 
smaller scales (higher k)
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Application: galaxy 
power spectrum

disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,
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where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,
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While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2
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, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4
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, k6R6
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, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
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While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2

loop
, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4

⇤
, k6R6

⇤
, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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directly connected to a propagator (linear power spectrum).26

3. Propagators are represented as vertices with 2 outgoing lines of opposite momentum±k,
PL(k)

�k k

,

and they are assigned a factor PL(k).

4. All momenta that are not fixed in terms of momentum constraints are integrated over via

Z

p
⌘

Z
d3p

(2⇡)3
. (B.24)

A diagram without any loop integral is said to be a leading-order (LO), or tree-level diagram.

5. Each diagram is multiplied by the symmetry factor, which accounts for the number of all nonequivalent
labelings of external lines and degenerate configurations of the diagram.

As an example, the NLO contribution to the matter power spectrum [Eq. (B.18)] can be represented as:

P nlo
mm(k) = P (22)

mm (k) + 2P (13)

mm (k) =
F2 F2

+
F3

. (B.25)

Appendix B.3 E↵ective field theory and the nonlinear scale

The pressureless fluid equations Eqs. (B.1)–(B.2) that we have considered so far are not strictly correct,
as they neither take into account shell crossing of the dark matter, nor the presence of pressure in the
baryonic component. In reality, dark matter is governed by the collisionless Boltzmann, or Vlasov equation,
which predicts that multi-streaming occurs on small scales. Indeed, Eqs. (B.1)–(B.2) are obtained from the
Vlasov equation by truncating the hierarchy of velocity moments, and dropping the second- and higher-order
moments, which contain the e↵ective pressure and anisotropic stress. The pressure of the baryon fluid, on
the other hand, cannot be neglected on small scales. The E↵ective Field Theory approach to Large-Scale
Structure (EFTofLSS [83, 84]) provides a rigorous approach to take into account these beyond-pressureless-
perfect-fluid contributions from small-scale perturbations. Essentially, this can be seen as a bias expansion
for a specific tracer that obeys stress-energy conservation. The latter in fact ensures that Eqs. (B.1)–(B.2)
are only corrected by higher-derivative contributions.

The derivation of the EFT contributions proceeds by smoothing the density �⇤(x, ⌧) and velocity v⇤(x, ⌧)
fields on the arbitrary scale ⇤, retaining only modes k . ⇤ (see Sec. 2.10). While this erases the small-scale
perturbations, the latter contribute stochastic terms, and moreover are modulated by �⇤ and v⇤, leading to
additional long-wavelength contributions. In the end, one obtains a contribution �@j⌧ ij/⇢m on the right-
hand-side of the Euler equation, where the e↵ective stress tensor ⌧ij captures the pressure and viscosity forces
induced by the small-scale fluctuations. Expanding this to leading order in the large-scale fluctuations, the
e↵ective stress tensor can be written as [83, 84]

[⌧ij ]⇤ = pe↵(⇤)�ij + ⇢m


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(B.26)
Here, pe↵ , cs, cbv, csv are, respectively, e↵ective pressure, adiabatic sound speed, bulk viscosity coe�cient,
and shear viscosity coe�cient, which depend on ⇤. Note that pe↵ leads to a stochastic contribution to the
matter velocity vi(k) which in Fourier space is proportional to iki (see also Sec. 2.8). Since the quantities
cs, cbv, csv are due to the dependence of the small-scale density and velocity fields on the large-scale en-

26This is because diagrams that involve interaction vertices directly connected to each other are absorbed into higher-order
interaction vertices.
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• Next-to-leading order (NLO): involve 2 additional 
quadratic, 1 cubic, and 2 higher-derivative parameters


• Quadratic and cubic terms scale like


• Controlled by shape of P(k) and nonlinear scale


• Higher-derivative contributions scale as


• Obviously, NLO corrections become important toward 
smaller scales (higher k)


• Importantly: Two independent expansion parameters!

Application: galaxy 
power spectrum

disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,

PL(k) ⇡
2⇡2

k3nl

✓
k

knl

◆n

, (4.25)

where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,

I [�2,�2]

PL(k)
= 2

✓
k

knl

◆3+n Z 1

�1

dµ

2

Z
1

0

x2dx
h⇣

x
p

1 + x2 � 2xµ
⌘n

� x2n
i
. (4.26)

While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2

loop
, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4

⇤
, k6R6

⇤
, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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disentangle the various higher-order bias parameters in practice; note that there is only a limited range
in wavenumbers that can be used for the parameter estimation, due to the presence of higher loop and
derivative corrections (see below). Nevertheless, the leading-order bispectrum can be used to determine b2
and bK2 , leaving only btd, br2�, and P {2}

""m to be constrained from the NLO correction to the halo-matter
cross-power spectrum.

In order to gain a more detailed understanding of the magnitude of the corrections in Eq. (4.22), let us
approximate the matter power spectrum by a power law,
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where knl is the nonlinear scale at which the dimensionless matter power spectrum �2(k) = k3PL(k)/(2⇡2)
becomes unity. This yields, for example,
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While other NLO loop-integral terms have di↵erent angular integrands, the scaling / (k/knl)3+n is common
to all (see also Fig. 12). Note that, depending on the value of n, the integral over x might need to be
regularized in the UV (ultraviolet, small-scale, or large-x, limit of the integral), while the integral is safe from
divergence in the IR (infrared, large-scale, or small-x, limit of the integral), because of the term subtracted
in Eq. (4.23); in any case, this does not a↵ect the scaling with k/knl. This scaling allows us to estimate the
importance of higher-order terms. For example, 2-loop corrections correspondingly scale as (k/knl)2(3+n)

for a scale-free power spectrum [216]. For our reference ⇤CDM cosmology, we have approximately15 knl(z =
0) = 0.25hMpc�1 and n = d lnPL/d ln k|knl = �1.7, so that the one-loop terms scale approximately as
(k/knl)1.3. Of course, this is only a rough approximation as PL(k) cannot be approximated as a power
law over the entire relevant range of scales. In particular, since n becomes positive for k . 0.02hMpc�1,
the NLO terms eventually scale as k2 for su�ciently small values of k. Nevertheless, such estimates are
important as they allow us to marginalize over higher-loop corrections and rigorously take into account the
uncertainty in the prediction of Eq. (4.22) [261].

The higher-derivative term / br2� obeys a scaling with k (/ k2) that is in general di↵erent from that
of the NLO corrections (/ k3+n). Further, the former involves an additional scale, R⇤. Thus, we have two
independent expansion parameters,
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Thus, depending on the halo or galaxy sample, the leading higher-derivative term could be negligible com-
pared to the NLO corrections on the scales of interest, e.g. 0.01 . k[hMpc�1] . 0.2, or could be significantly
larger. If ✏deriv. is comparable to ✏loop on the scales considered, then both NLO and leading higher-derivative
corrections should be included. This is what we have assumed in Eq. (4.22). More generally, when going to
higher orders, one would then include terms that involve the same powers of ✏loop and ✏deriv.. For example,
at 2-loop order, these are the terms of order ✏2

loop
, ✏loop✏deriv., and ✏2

deriv.
. On the other hand, if the two

expansion parameters are substantially di↵erent, then it is necessary to retain terms that are higher order
in the larger parameter. For example, if ✏deriv. � ✏loop, one should allow for additional higher-derivative
terms, which leads to contributions / {k4R4

⇤
, k6R6

⇤
, · · · }PL(k) in Eq. (4.22) [126, 262, 263]. The cuto↵ of

the perturbative approach then is at k ⇡ 1/R⇤. All of this applies analogously to the bispectrum and higher
n-point functions.

Finally, the higher-derivative stochastic contributions, which scale as k2 (as opposed to k2PL(k) as
the higher-derivative bias contribution), are higher order in terms of their k scaling, but the amplitude

15This was obtained by fitting a power law to PL(k) over the range k 2 [0.1, 0.25]hMpc�1.
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directly connected to a propagator (linear power spectrum).26

3. Propagators are represented as vertices with 2 outgoing lines of opposite momentum±k,
PL(k)

�k k

,

and they are assigned a factor PL(k).

4. All momenta that are not fixed in terms of momentum constraints are integrated over via
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A diagram without any loop integral is said to be a leading-order (LO), or tree-level diagram.

5. Each diagram is multiplied by the symmetry factor, which accounts for the number of all nonequivalent
labelings of external lines and degenerate configurations of the diagram.

As an example, the NLO contribution to the matter power spectrum [Eq. (B.18)] can be represented as:
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Appendix B.3 E↵ective field theory and the nonlinear scale

The pressureless fluid equations Eqs. (B.1)–(B.2) that we have considered so far are not strictly correct,
as they neither take into account shell crossing of the dark matter, nor the presence of pressure in the
baryonic component. In reality, dark matter is governed by the collisionless Boltzmann, or Vlasov equation,
which predicts that multi-streaming occurs on small scales. Indeed, Eqs. (B.1)–(B.2) are obtained from the
Vlasov equation by truncating the hierarchy of velocity moments, and dropping the second- and higher-order
moments, which contain the e↵ective pressure and anisotropic stress. The pressure of the baryon fluid, on
the other hand, cannot be neglected on small scales. The E↵ective Field Theory approach to Large-Scale
Structure (EFTofLSS [83, 84]) provides a rigorous approach to take into account these beyond-pressureless-
perfect-fluid contributions from small-scale perturbations. Essentially, this can be seen as a bias expansion
for a specific tracer that obeys stress-energy conservation. The latter in fact ensures that Eqs. (B.1)–(B.2)
are only corrected by higher-derivative contributions.

The derivation of the EFT contributions proceeds by smoothing the density �⇤(x, ⌧) and velocity v⇤(x, ⌧)
fields on the arbitrary scale ⇤, retaining only modes k . ⇤ (see Sec. 2.10). While this erases the small-scale
perturbations, the latter contribute stochastic terms, and moreover are modulated by �⇤ and v⇤, leading to
additional long-wavelength contributions. In the end, one obtains a contribution �@j⌧ ij/⇢m on the right-
hand-side of the Euler equation, where the e↵ective stress tensor ⌧ij captures the pressure and viscosity forces
induced by the small-scale fluctuations. Expanding this to leading order in the large-scale fluctuations, the
e↵ective stress tensor can be written as [83, 84]

[⌧ij ]⇤ = pe↵(⇤)�ij + ⇢m
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Here, pe↵ , cs, cbv, csv are, respectively, e↵ective pressure, adiabatic sound speed, bulk viscosity coe�cient,
and shear viscosity coe�cient, which depend on ⇤. Note that pe↵ leads to a stochastic contribution to the
matter velocity vi(k) which in Fourier space is proportional to iki (see also Sec. 2.8). Since the quantities
cs, cbv, csv are due to the dependence of the small-scale density and velocity fields on the large-scale en-

26This is because diagrams that involve interaction vertices directly connected to each other are absorbed into higher-order
interaction vertices.
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Figure 12: Left panel: illustration of halo auto- (red, top line) and cross-power spectra (green, middle line), and the matter
power spectrum (blue, bottom line) at z = 0. The solid lines show the total LO plus NLO result, while the dashed curves
show the LO (linear) prediction only. The bias parameters used here are b1 = 1.50, b2 = �0.69, and bK2 = �0.14, as in
Tab. 6, while br2� = R2

⇤ with R⇤ = 2.61h�1 Mpc. btd = 23/42(b1 � 1) is taken from the Lagrangian LIMD prediction

(Sec. 2.4). The stochastic amplitudes are taken from the Poisson expectation, P
{0}
" = 1/nh and P

{2}
" = �R2

⇤/nh, with

nh = 1.41 · 10�4(h�1 Mpc)�3. We have set P
{2}
""m = 0 in P nlo

hm (k). Right panel: fractional size of the NLO contributions to
the matter and halo-matter cross-power spectrum at z = 0. The red dashed line shows the result for Phm(k) for the fiducial
bias parameters given above. The di↵erent shaded areas around P nlo

hm show the e↵ect of rescaling the various bias parameters
by a factor in the range [0.5, 2]. Clearly, the contributions from di↵erent bias parameters exhibit similar dependencies on k,
and are in general di�cult to disentangle using only the power spectrum. The perturbative description is expected to fail for
k & 0.25hMpc�1, where P nlo

mm(k) becomes as large as the LO prediction PL(k).

We will return to this in Sec. 4.5.3. It is often assumed that there is no stochastic contribution to the
halo-matter cross-power spectrum. However, this is only true at lowest order. The nonlinear small-scale
modes of the density field are responsible for both the halo stochasticity " and the stochastic contribution
to the matter density field "m, which, as discussed in Appendix B.3, is due to the e↵ective pressure of the
nonlinear matter fluctuations and scales as k2 in the low-k limit. Hence, one has to allow for a correlation

between the two stochastic fields, leading to the term k2P {2}

""m in P nlo
hm , which is comparable to the other

NLO contributions. Note that it could be either positive or negative.
The magnitude and scale dependence of the NLO corrections to the halo and matter power spectra is

shown in Fig. 12. As expected, we see that the corrections become increasingly important towards smaller
scales (higher k). We see a particularly steep suppression of Phh(k), which, for our fiducial parameters, is

dominated by the higher-derivative stochastic contribution k2P {2}

" . The right panel of Fig. 12 shows the
fractional size of the NLO correction to Pmm(k) and Phm(k). Depending on the value of the various bias
and stochastic parameters, the NLO correction could be either positive or negative (shaded regions), and
cancellations between the di↵erent NLO contributions can occur. In any case, as soon as the fractional
size of the NLO correction approaches order unity, we expect that higher-order loop contributions which we
have not included become comparable to P nlo

hm (k) as well, and hence the perturbative expansion ceases to
converge.

The NLO halo-matter power spectrum adds five additional free parameters to the ones present at leading

order (b1, P
{0}

" ). These can, in principle, be disentangled due to the di↵erent scale dependence of each term.
However, as illustrated in Fig. 12, these scale dependences are su�ciently similar that it is di�cult to
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• Beyond leading order:  5 
additional parameters

• Many contributions have very 
similar shape


• Free parameters limit cosmological 
information that is available in 
power spectrum by itself

Application: galaxy 
power spectrum
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Beyond the galaxy 
power spectrum

• There are significant degeneracies between bias and 
cosmology in galaxy power spectrum (e.g., b1(η) and D(η))


• Currently, a lot of interest in looking at more general galaxy 
statistics to gain more cosmological information


• Bispectrum (three-point function)


• Position-dependent power spectrum


• Voids


• …


• Solid understanding of power spectrum is always the basis, 
however.
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Observed galaxy 
clustering

• We are missing just one ingredient now: 
how to go from intrinsic (rest-frame) 
clustering of galaxies to observations


• Lecture 5


• Then we’ll also look at how galaxy 
clustering and other LSS probes can tell us 
about new cosmological physics
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