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Outline of lectures

. The problem: collisionless Boltzmann equation and fluid approximation

|. Linear evolution

. Nonlinear evolution of matter

|. Perturbation theory

2. Simulations

3. Phenomenology of nonlinear matter distribution
. Formation and distribution of galaxies

|. Galaxy formation in a nutshell <- HERE

2. Spherical collapse model

3. Physical clustering of halos and galaxies; bias

4. Observed clustering of galaxies

. Beyond ACDM



Notation

ds? = —(1 4 2W(x, t))dt + a2(t)(1 + 2®(x, t))da’

® Comoving coordinates: dr = a(t)dx
. _dt  da  dlna
® Conformal time: dl= o= s =
. . dz
® Comoving distance: dx =—dn= =
: : D dax ,
® Particle velocity/momentum: v===a— ==
m dt
® Fluid velocity; divergence: u; 0 =0

® Gravitational potential: /




Halo abundance
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Spherical collapse
picture

® Consider isolated, uniform S—
spherically symmetric Al
overdense region (i.e.
embedded in patch of
unperturbed background)

M
® (Can solve for evolution of this
region exactly up until collapse!
GM 876G Newtonian equation (plus A term) for

r(t) =—

+ T,oAr(t) Eq (12.67) physical (not comoving) radius r(t)

re(t)



Spherical collapse
picture

S t Eq (12.67
20y T g Part) Eaizen o oo

® Parametric solution possible if we
neglect A\ term:

Ft) = —

r(t) = rt—a(l — C0SH) >
2 ’ r(t)
fea | Eq (12.68) k
t =—(0 —sino). Fia
T 1.0f
0.8
® Can show that region of any size that 0.6;
collapses at a given time has linearly- 8-‘21;'
extrapolated initial over density of N | | | t

0.5 1.0 1.5 2.0 la

S (@, n) = 6op = 1.686



Spherical collapse and
excursion set

® Region of any size that collapses at a given
time has linearly-extrapolated initial over

density of (1) (g, ) = 6., = 1.686 A M\

® Basis for semi-analytic approach to halos:

|. Compute linear density field 6(!)

2. Smooth on a scale R and identify which
points lie above Ocr

overdensity 6{’(q)
|
é\_P/ .
—

—
— \\

3. ldentify those with future halos with mass

RL(M) — R position g

® With some refinements to avoid double-
counting, known as excursion set approach

® Very rough, but useful to have in mind

1 ¥ ] >



From matter to galaxies

® So far, studied what happens to cold collisionless
matter - but what about the gas and stars we actually
observe!
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® So far, studied what happens to cold collisionless
matter - but what about the gas and stars we actually
observe!




Galaxy formation in a
nutshell

Generally, gas follows the DM component (e
in its collapse until stopped by pressure B

Minimum collapsing object set by Jeans
scale, which is function of temperature

Gas begins to cool once it has collapsed
to sufficient density so it can radiate away
energy via collisional excitations -
reducing Jeans scale and allowing further
collapse

Eventually stars form, as proto-galaxy
continues to accrete gas

Star formation regulated by balance of
gravitational growth and feedback, due to
radiation, heating, or ejected gas
(Supernovae, massive black holes)

lllustris-TNG



https://www.tng-project.org/media/

Galaxy formation in a
nutshell

® Generally, gas follows the DM
component in its collapse until
stopped by pressure

® Minimum collapsing object set
by Jeans scale, which is function
of temperature

® (Gas begins to cool once it has
collapsed to sufficient density
so it can radiate away energy
via collisional excitations -
reducing Jeans scale and
allowing further collapse

® Eventually stars form, as proto-galaxy continues to accrete gas

® Star formation regulated by balance of gravitational growth and
feedback, due to radiation, heating, or ejected gas (Supernovae,
massive black holes) ustris. TNG



https://www.tng-project.org/media/

Models for galaxy
clustering

® We cannot simulate galaxy formation realistically yet (and certainly not
over cosmological volumes)

® One approach: attempt to populate halos with galaxies

® Halo occupation distribution (HOD): Nga(halo) parametrized as
function of halo mass

® Subhalo abundance matching (SHAM): populate mass-ordered halo
substructure with galaxies

® Physically motivated, but difficult to quantify the error we are
making with these simplifications

® Alternative: parametrize our ignorance and make minimal assumptions:
EFT approach

® Minimal assumptions and controlled error - but restricted to large
scales



EFT approach to galaxy
clustering

® |dea:follow treatment of perturbations to
matter, as far as possible

® But we need to take into account that
galaxies form out of baryons, and their
number isn’t conserved!

® Start from perturbative expansion of
fluctuations in galaxy number counts:

Tlg(ZI}, 77) B ﬁg (77)

2
- — Sg(x, 1) =85 (x, 1) + 8 (x,m) + - + 85 (x, )
ng(ﬁ)




EFT approach to galaxy
clustering

® Start from perturbative expansion of
fluctuations in galaxy number counts:

ng(wv 77) B ﬁg(ﬁ)
ng(n)

1 2
= Sg(x, 1) =385 (x. ) + 857 (x.m) + -+ + 88" (x, )

® Goal: write galaxy density as a sum of
observables (or operators; -> later) O
multiplied by free bias coefficients:

59(337 77) — Z bo (77)0(337 77)
O

At fixed order in perturbation theory, there should
only be a finite number of these...



Spacetime view of galaxy
formation

® Consider coarse-grained (large
scale) view of region that forms a

galaxy at conformal time T

® Formation happens over long time
scale, but small spatial scale R+

® For halos, expect R. S Ry

® Approximate galaxy formation as e
spatially local (on large scales)

space



Spacetime view of galaxy
formation

® | eading gravitational
observable is tidal field 9;0;®
which includes density § x V20

® Along entire trajectory of
forming galaxy

time




Galaxy bias expansion

® |gnore time evolution for now

® [hen, we have a local bias relation:
59(5137 77) — Fg(a”&ajqj(wv 77)7 77)

® Then,it is easy to write down bias expansion, at
first, second, ... order: _
9i0; 1,
_ 5,

Kij £, = 0 L,
5922500 o Ve 3 ] -
O 0;0; — §5ijv2] 0;0;¥ (x, 1)

=

O € {5, 52, (Kij)Q, }

scaled tidal field (more practical)

0 = d,, evolved matter density field

1 2
Sg(x, ) =85 (x, 1) + 85 (x, ) 4 - + 85" (x, )



Non-locality in time

. . X = Xq(T)
® Continue to approximate galaxy
density as a local function in space
— \

® We are then left with nonlinear,
nonlocal-in-time functional of tidal

tensor:
Ng (Xa 7-) — Fg [a’iajq)(xﬂ (7-/)7 7-/)]

7 = 7 in following slides...
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Non-locality in time

® Nonlocality in time seems like a major

problem! ng(x,7) = Fy [0,0;®(xa("),7')]
® But the scale-free nature of gravity comes j

to the rescue — o~

7 = 7 in following slides...
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Non-locality in time

® Nonlocality in time seems like a major

problem! ng(x,7) = Fy [0,0;®(xa("),7')]
® But the scale-free nature of gravity comes j

to the rescue — o~

® Consider linear density term:

/0 dr’ fo.5(m,7)o(xa ("), ")

7 = 7 in following slides...
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Non-locality in time

® Nonlocality in time seems like a major

problem! ng(x,7) = Fy [0,0;®(xa("),7')]
® But the scale-free nature of gravity comes j

to the rescue — o~

® Consider linear density term:
[ ar fys(r.)oent) )
0

® At linear order: growth is scale-invariant g (7")
5(aa(r'), ') = D(")6 (2, o)

® Integral simply becomes
by (1)) (@, 7)

Linear local bias relation
7 = 7 in following slides...
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Non-locality in time

locality in time at higher order,

since expansion continues to
. — \
factorize:

® We can similarly deal with non ng(x,7) = F, [&:aj@(Xﬂ(T’),T’H?

5(x,7) = D(7)6W(x) + D?(1)6P(x) +

® Allows us to obtain a complete
expansion of galaxy density field: xq (')

ng(x,7) =ng(T 1—|—Zbo

up to given desired order in
perturbations

7 = 7 in following slides...



Spatial nonlocality and
scale-dependent bias

® Beyond large-scale limit: need to expand
spatial nonlocality of galaxy formation

—

® Higher derivative biases are suppressed
with scale R+

® Eg, sz25 — 5g(k77_) — (bl T bv25k233) 5(k77_)

7 = 7 in following slides...

24



Spatial nonlocality and
scale-dependent bias

Beyond large-scale limit: need to expand
spatial nonlocality of galaxy formation

—

Higher derivative biases are suppressed
with scale R«

Eg., RIVZ6 —> 04(k,7) = (b1 + by2sk®R2) 6(k, 7)

This also allows for baryonic physics,
which has to come with additional derivatives

® Example: pressure perturbations 6p = c2dp

® Pressure force: F' = Vip x V§

|dentical in form to effective sound speed
in matter we encountered before

25
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EFT approach in LSS

e Effective field theory: write down all terms (in
Lagrangian or equations of motion) that are
consistent with symmetries

® Gravity: general covariance

® Galaxy density: 0-component of 4-vector
(momentum density)
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EFT approach in LSS

e Effective field theory: write down all terms (in
Lagrangian or equations of motion) that are
consistent with symmetries

® Gravity: general covariance

® Galaxy density: 0-component of 4-vector
(momentum density)

® Order contributions by perturbative order, and
number of spatial derivatives (gradient expansion)
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EFT approach in LSS

® For large-scale structure (LSS), general
covariance boils down to the statement that ¥, VU
and v cannot appear in bias expansion

® |n other words, leading gravitational
observable is tidal field including density, like
we did above

® Since we take into account entire evolution, 0, 9;u’
are already incorporated as they can be
obtained from Euler equation
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Physical picture of bias

® Spherical collapse model:
halos form in regions of
smoothed initial density field
that are above collapse
threshold
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® High excursions of Gaussian
random field are more

clustered than field itself j\ J\

d
? |
—
—
/4%
—

ove

® Can be calculated by position g
considering definition of
correlation function p(gg) (X 4+ 1) > Ser, 5%1) (x) > 5cr)
. r(r) =
(homework): Sthr (7 D) > )2
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Physical picture of bias

® Spherical collapse model:
halos form in regions of
smoothed initial density field
that are above collapse
threshold
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® High excursions of Gaussmn

random field are more 2 j\
clustered than field itself

verdensity 6{1)(q)
—— |
—
———
/{%
—

® Clustering on large scales (r position g
>> smoothing scale R):

Sthr(r) = (bthr) é(l)(r) + = (bthr) [S(l)(r)]2_|_...



Physical picture of bias

® Spherical collapse model:
halos form in regions of
smoothed initial density field
that are above collapse
threshold
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® High excursions of Gaussian

random field are more 2 j\
clustered than field itself
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® Clustering on large scales (r position g
>> smoothing scale R):

1
Ethr (7) <1> (r) + Q(béhﬁz[s;” PR+ -



Complete bias expansion

ng(x,7) =ng(7) |1+ > bo(r)0(x, 7)

O

32



Complete bias expansion

ng(x,7) =ng(7) |1+ > bo(r)0(x, 7)
| O i

® The picture is not complete yet, since this relation can
only hold in a “mean-field” sense

33



Complete bias expansion

ng(w, 7-) — ﬁ’g(T) 1+ Z bO(’T)O(LB, T)—l—g(il?, 7') -+ 85(1;7 T)(S(a’;, 7') “ e
O

® The picture is not complete yet, since this relation can
only hold in a “mean-field” sense

® Small-scale perturbations introduce stochasticity €
(and higher-order terms)

® Cannot predict € as field, but know the form of
statistics:

(c(k)e" (k) = (2m)3p(k — k') [P + 2P 4]

® |n the end, stochasticity reduces to fixed number of
additional free parameters

34
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From bias expansion to
statistics

® Once we have bias expansion, we can derive
PT kernels for galaxies, and hence galaxy
statistics, as a function of the bias parameters:

1 2
Sg(x,m) = 85" (x, m) + 857 (x, ) + -+ 85" (%, )

-> Lecture 2
(n) ’ 5 [ &k 34(3) -
5g" e,y =D"L(n) || ] 23 | @) (k- > ki
i=1 i=1
X Fgn(ky, -+, kn;n)do(k1)---So(kn).
For example (see homework):
1 ki-kp)? 1
Fgo(ky, k2;n) =b1(n)Fa(k, k2) + 5b2(m) + bg2(n) [( 22,{22) - é} ' Eq (12.87)
1%2



Application: galaxy
power spectrum

® Assume we can measure rest-frame galaxy density

® That is, neglect redshift-space distortions and other projection effects

® | eading-order (galaxy) power spectrum at fixed
time:

Pyg(k) = b3 PL(k) + P
® ) free parameters

® Noise term is often approximated as Poisson,

but not accurate in general. (o) Poisson 1
5 ﬁg

36



Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters

37



P(k) [Mpc® /7]

10°

10%F

103 ¢

Application: galaxy

\\
~
\\
~ o

\\ \
Pinh) \
Py (k)
Phh(k> \\\
| ro1oa
1072 107!

wavenumber k [h/Mpc]

AP(k)/Pr(k)

1.5

power spectrum

® Example calculation of NLO galaxy power spectrum,
using guessed, order-unity values for bias coefficients

1.0F

0.0

—0.5F

PR (k) Pu(k)
— — PO (k)/ (b1 P (k)

by2s
by
by

bra

— —

M|
107!
wavenumber k [h/Mpc]




Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters

® (Quadratic and cubic terms scale like

B ( k >3—|—n ( k )1.3 N ‘ %
€loop = | 7 ~ F i > P S

Fx 0.25h Mpc_l
® Controlled by shape of P(k) and nonlinear scale

39
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Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters

® (Quadratic and cubic terms scale like

B ( k >3—|—n ( k ) 1.3 N ‘ %
€loop — | 77— ~ 2 : : 2 s
loop ki, 0.25 h Mpc_1

® Controlled by shape of P(k) and nonlinear scale

® Higher-derivative contributions scale as cciv. = k*R:
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Application: galaxy
power spectrum

® Next-to-leading order (NLO): involve 2 additional
quadratic, | cubic,and 2 higher-derivative parameters

® (Quadratic and cubic terms scale like

B ( k >3—|—n ( k ) 1.3 N ‘ %
€loop — | 77— ~ 2 : : 2 s
loop ki, 0.25 h Mpc_1

® Controlled by shape of P(k) and nonlinear scale

® Higher-derivative contributions scale as cciv. = k*R:

® Obviously, NLO corrections become important toward
smaller scales (higher k)

® |mportantly: Two independent expansion parameters!
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Application: galaxy
power spectrum

® Beyond leading order: 5
additional parameters

()

® Many contributions have very
similar shape

o
~~

AP(k)

® Free parameters limit cosmological
information that is available in
bower spectrum by itself

1.5

1.0F

0.0F

0.0

—0.5F

P (k) / Pu(k)
— — D (k) /(b1 PL(K))

by2;

T
107
wavenumber k [h/Mpc]




Beyond the galaxy
power spectrum

® There are significant degeneracies between bias and
cosmology in galaxy power spectrum (e.g., bi(1) and D(n))

® Currently, a lot of interest in looking at more general galaxy
statistics to gain more cosmological information

® Bispectrum (three-point function)

® Position-dependent power spectrum

® Voids

® Solid understanding of power spectrum is always the basis,
however.
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Observed galaxy
clustering

® We are missing just one ingredient now:
how to go from intrinsic (rest-frame)
clustering of galaxies to observations

® |ecture5

® Then we'll also look at how galaxy
clustering and other LSS probes can tell us
about new cosmological physics

44



