Galaxies as probes of fundamental physics

Focus has been on large scales and ‘summary’ statistics → power spectra, correlation functions, etc.

Planck

SDSS

Hubble Deep Field
Galaxies as probes of fundamental physics

In large scale structure, galaxies are mere building blocks → "dots".

Different perspective: use individual galaxies as laboratories and look at how their structure depends on environment

Search for fifth forces in galaxies
Galaxies as probes of fundamental physics

See Baker et al, 1908.03480
Galaxies as probes of fundamental physics
Galaxies as probes of fundamental physics

Meerkat (Radio) view of centre of our galaxy
Galaxies as probes of fundamental physics

Gravitational screening:

\[\Phi_s = \frac{\alpha M}{r} e^{-\frac{r}{M}} \]

Depend on environment/mass...

Look at galaxies and constituents in different environments.

E.g., in voids versus clusters

- at stars versus gas and dark matter
- at black holes versus stars.
Galaxies as probes of fundamental physics

Environment: Build a "gravitational map" of the Universe

- Galaxy catalogue

- Fill in long wavelength modes with BORG (Sims)

- Use abundance matching to associate holes to galaxies (short wavelengths)

Galaxies as probes of fundamental physics

2D slices of the Universe

\[\Phi/c^2 \]

(gravitational potential)

\[a \]

(\(a = -\nabla \Phi \))

\[K \]

(curvature \(\sim \Delta^2 \Phi \))
Galaxies as probes of fundamental physics

What do we look for?
Galactic offsets

\[\text{Gas Halo} \]
\[Q_{\text{screemed}} = Q_{\text{ext}} + \frac{\Delta G}{G} M_* \]
\[Q_{\text{ascreened}} = Q_{\text{ext}} + G \frac{M(S_\chi)}{\Gamma_x^2} \]

So

\[\frac{M(S_x)}{\Gamma_x^2} = \frac{Q_5 \Delta G}{G^2} \]

if \(|\Phi| < |\Phi_c| \)

\[\Gamma_x = 0 \]

if \(|\Phi| > |\Phi_c| \)

(screened)

(unscreened)
Galaxies as probes of fundamental physics

Offsets

Screening Scale

Desmond & Ferreira, 2010.05877
Galaxies as probes of fundamental physics

What do we look for? Warps

\[z(x) = -\alpha_{s_{\frac{1}{2}}} \frac{\Delta G}{G_N^2} \frac{1}{M_{\text{halo}}(\leq x)} \frac{|x|^3}{\nabla x} \]

\[\omega_1 = \frac{1}{\nabla_x^3} \int_{-\nabla x}^{\nabla x} |x| z(x) \, dx \]
Galaxies as probes of fundamental physics
Galaxies as probes of fundamental physics

Desmond & Ferren 2010.05817
Galaxies as probes of fundamental physics

What does it mean?

Example: \(f(R) \) theory is screened.

\[
f_{R_0} = \left. \partial R f \right|_{a=a_0}
\]

Galaxy constraints: \(f_{R_0} \leq 10^{-8} \)

i.e. all objects are screened and so no astrophysical significance!
Galaxies as probes of fundamental physics

Vainshtein Screening test.

Galilean models: invariant \(\phi \rightarrow \phi + d_\mu x^\mu + c \)

Have screening but Black holes are unscreened

So

Star Motion \(\neq \) Black Hole Motion

Offset!
Galaxies as probes of fundamental physics

Vanshstein Screening test.

Fifth force has magnitude

\[a_s = \frac{\Delta G}{G_N} \frac{G_N Q_M}{r^2} (\frac{\sigma}{\sigma_v})^{3/2} \]

Scalar charge

\[Q = \int \rho \, d^3x \]

Density

Vanshstein Radius
Galaxies as probes of fundamental physics

Van Sloan

Screening test

Black hole offsets → Data

Today 22/1
Galaxies as probes of fundamental physics

Vanuhtain Screening test

Model for offset distribution ($\Delta \theta$)

\[
\frac{f}{\sqrt{2\pi} \sigma_{\text{obs}}} \exp \left[-\frac{\Delta \theta^2}{2 \sigma_{\text{obs}}^2} \right] + \frac{(1-f)}{2\nu} \exp \left(-\frac{|\Delta \theta|}{\nu} \right)
\]

Gaussian

Laplace
Galaxies as probes of fundamental physics

\[\frac{\Delta G}{G} \sim 0.1 \]

\[\text{log}_{10}(r_v / \text{Mpc}) \]

\[1\sigma \text{ constraint on } \Delta G/G_N \]
Galaxies as probes of fundamental physics

Summary
- Galaxies have tremendous potential for constraining fundamental physics
- Very, very messy \rightarrow challenging
- "Messy" Bayesian Forward Modelling (The Future)
- Results \rightarrow Constraint on $f(R)$ is strong for $f_\gamma \sim 10^{-9}$ (the whole Universe is screwed!)
- Constraint on Galilean $\frac{\Delta G}{G} \sim 0.1$