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LCTP focuses on:
1. Particle theory

2. Particle pheno
3. Cosmology
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Also: working with three Brazilian students at the moment
(U. Andrade, R. van Mertens; O. Alves <—@Michigan)



Emphasis of my lectures

1. Concepts made simple/intuitive
2. Developing experience with numerical work

I want to enable to you to code up calculations
FROM SCRATCH
and produce useful, research-ready quantities.

— Probably the least theoretical lectures in this school
Probably the most numerical lectures in this school



How do we describe the large-scale structure
and constrain cosmological model?
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Harvard-Cfa survey;
de Lapparent, Geller & Huchra (1986)

SDSS/BOSS survey
SDSS/BOSS collaboration



Ongoing or upcoming LSS experiments:

e Ground photometric:
» Kilo-Degree Survey (KiDS)
» Dark Energy Survey (DES)
» Hyper Supreme Cam (HSC)
» Large Synoptic Survey Telescope (LSST)

e Ground spectroscopic:
» Hobby Eberly Telescope DE Experiment (HETDEX)
» Prime Focus Spectrograph (PFS)
» Dark Energy Spectroscopic Instrument (DESI)
e Space:
» Euclid
»Wide Field InfraRed Space Telescope (WFIRST)
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Overdensity delta

The basic* “observable” quantity is the overdensity

(* this doesn’t capture the overall
number of galaxies, which is

described separately by the mass 10 (X, t) — 15

function) 5 (3(7 t) —

Note that 1t satisfies -1 < 0 < oo.
[A corollary of that is that, for large delta = 1,
the distribution of delta is always non-Gaussian.]

We will specialize in small fluctuations (| 0|« 1) from here on.
In that limit, the statistical distribution of delta may or may not be Gaussian:

* Standard inflationary theory (single scalar field, always slow-rolls, in Einstein
gravity, on a beautiful day in June) predicts tiny (nonzero but basically
unobservable) Non-G - so basically the “sky 1s Gaussian”

* Searches for so-called primordial NG are at the forefront of research in
cosmology - finding one would be finding Holy Grail



Fourier-space overdensity

(1) = ;V / 5(r. )e— T gy

Note:

- 6(r) 1s dimensionless, but then

» 5k 1s not, and has units of LL3/2, or [k]|-3/2

= s0 k3| 6k | 2 1s dimensionless

= more on that a bit later



Two-point correlation function

Consider a point process (with point particles in 3D space) with
underlying constant density n.
Probability of finding a particle in volume dV 1is

dP = ndV

Probability of finding two particles 1in respective volumes dVi, dVa is

dP = n2(1 -+ 5(7“12)) dVldVQ

where ksi (r12) 1s the excess probability for clustering.
It is the two-point correlation function.

Related quantities can be written as a function of ksi. For example,

(N) =nV + nfg(r)dv.



Two-point correlation function &(r)

Intuitive understanding of 2pt correlation function:
It 1s the excess probability for clustering.
“If I am sitting on one galaxy, I am more (or less) likely to find one
nearby, then i1f I were sitting 1n space (between galaxies)”

What functional form does &(r) take?

Cosmological theory actually most straightforwardly predicts the
Fourier transform of the 2pt function - the power spectrum P(k).
Nevertheless, this phenomenological fit worked well since 1980s:

- (2)

with vy = —1.8 and ro = 5 Mpc (galaxies) or 20 Mpc (clusters).




Definition of &(r)

How to measure &(r)

S0 measure points separated by a distance r, and
average over the locations of all such points (vector x).

To do this precisely and accurately, you need an estimator.
More about that 1in a bit.



Two subtle points

(lp(x+1)—(p) ]| p(x)—(p)])x
(p)?

* The average above 1s nominally over all fixed spatial

§(r) =

positions x In many realizations of the universe (!). We
obviously don’t have access to multiple universes, so we reinterpret
the average as that over all locations x 1n our (one) universe. In doing
that we have assumed the ergodic theorem. See Thorne-Blandford
“Modern Classical Physics” for more on ergodic theorem and its proof.

- The two point function above 1s formally &(r) (note, vector r). We

usually convert 1t to &(r) (scalar r) by assuming the principle of

homogeneity - that the universe i1s the same at every location in space. As far
as we know (and as most inflationary models predict), the universe is
homogeneous on largest scales, though testing that is cutting-edge area of
research).



Three-point correlation function £(r)

You know the drill! Definition:
dP = n°[1 + &(r12) + £(r13) + E(ra3) + C(1123))] dVidVad Vs

Explicitly:
o px+r) = (p]lpx+s)—(p)][p(x)—{p)])x
C(T,S, |I' S|) T 3
(p)
= (0(x+71)d(x+8)d(X))x

Note, 1t 1s a function of a triangle configuration.
(source of a lot of complexity/complication in working with 3pt fun)

Fourier trans. of the 3-pt function is called the bispectrum.
We won't cover it here but it 1s another hot research topic.

Bispectrum, which 1s =0 in the CMB, can be large (and a huge pain to measure and
model) in the LLSS.



Growth of linear perturbations

Fabian’s and Valerie’s lectures covered perturbation theory, how
perturbations are created evolve, adiabatic and 1ssocurvature modes.
Here we start with one important result:

Specializing 1n adiabatic modes, late times (cs 1s tiny),
sub-horizon modes, and assuming GR:

0 +2HS — 4rGppn(t)d = 0

This 1s the key equation that describes the growth of linear,
sub-horizon fluctuations in General relativity.



Growth of linear perturbations

0 +2HO — 4nrGpp (1) =0

1. Radiation domination
a(t) «t2, H(t)=dot(a)/a = 1/(2t), ignore 4zGpmterm §(t) = Ay + As In(¢)
get ddot(6)+dot(6)/t=0, or (RD)

2. Matter domination
a(t) «t23, H(t)=dot(a)/a = 2/(3t), 4zGpm=(3/2)H2, §(t) = B1t*/® + Byt ™!
sol of the 6 « trget n(n-1)+(4/3)n-2/3=0, or ~ a(t) (MD)

3. Lambda domination
a(t) xexp(Ht), H(t)=H s=const, ignore 4zGpm term

get ddot(6)+2H 4dot(6)=0, or 0(t) = C1 + Co exp(—2Ht)
~ const (AD)



Growth of linear perturbations

0 +2HO — 4nrGpp (1) =0

RD : In(?)
0(t) ox MD : a(t)
AD : const

*RD and MD growth trends have been confirmed for a long time
by basic cosmological observations

- AD growth suppression, even though it started “yesterday”, has
clearly been observed in the cosmological data!



Growth of linear perturbations

Calculating the general solutions

Linear growth rate D

D(a) = o(a) ND o&%>

Growth suppression
factor g
(implicitly via D) |

ag(a)

D(a) = (0 =1)




Growth of linear perturbations

Calculating the general solutions

Linear growth rate Groyvth D( ) a g(a)
5 (a) suppression factor a) = (a — 1)
D(a) — (implicitly via D) g
o(a = 1)

Then § + 2H — 4nGpas(t)d = 0 becomes

dzg

dg
2
d1n a?

dln a

- 15 — 3w(a)pr(a)] F3[1 —w(a)| Qpe(a)g =0

2nd order ODE, can easily solve on the computer.
Works for all w(a)CDM cosmological models!
(w(a) =time-dependent equation of state of DE)




The (matter) power spectrum

Remember the overdensity in real and Fourier space

5 \/V k7
5(7“)— (27_‘_)3/5%@ k dgk

1 o ik
5E:W/5(T)ek d>r

Consider shifting position r by some Ar. Then
ikAT
0 i — 0 i €

(0:0%,) — ¢ F=FIAT (5.5% )

For a homogeneous universe, this must be independent of Ar!
Then we have our definition of power spectrum P(k):

(60%,) = (2m)* 6P (k — k') P(k

Note, this k is scalar
(homogeneity)




Power spectrum P(k)
At large scales (k «0.01 h Mpc-1)

P(k) cc k™ with m~1| (Harrison, Zel'dovich, Peebles spectrum)

- See my lecture notes about the HZP 1969 argument that n~1
« Inflation (1980=>) predicts n = 1 — 6¢+25, where €, n are “small”

 WMAP, Planck (2000s=) measure n =0.965 +0.004 (P18)
Matter power spectrum
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Power spectrum P(k)
At small scales (k » 0.01 h Mpc-?) P(k) ~ k4

- So basically P(k) = P(K)iarge-scales XT2(k), with T(k)ock-2
*T(k) 1s called the transfer function, and it “penalizes” modes that entered
the horizon before matter-radiation equality (modes with k>0.01)

* The higher-k the mode 1s, the earlier (before MR eq) it entered the
horizon and the less time 1t had to grow

* See my lecture notes for a more precise areument
Matter power spectrum

P(k) [(hMpc~=+)°]




What 1s the relation between P(k) and &(r)?

They are Fourier transforms of each other because
6x and 6(r) are (Wiener-Khinchin theorem)

Proof: P(k) = (6;0%) (= (6:0 7))
_ _// (5 () —zkll zkl)(]%’l(]
Iri2=ri—rg, l
integrate Jd3rz=V = /g(llz)(ﬂk'“(l 12

/ E(r)e _iEF(l:"f’

Of course that P(k) and &(r) contain the same information

However they are measured differently in practice; methods are subject to
different statistical and systematic errors. Roughly speaking:

(1) 1s easler to measure, esp with “holes” in the survey footprint
* P(k) 1s closer to theory



Dimensionless power spectrum A42(k)

Consider

E(r) = —

(27)

1

QT2

ikT 137 ~ :
: / P(k)e 3R /O P(k) sin(kr)kdk

Now evaluate the zero-lag correlation function, or variance, &E(r=0)

£(0) = % /0 " P(k) lim

r—0 k’r

sin(kr

)dekE/ A%(k)dInk
0

where AQ (k ) — kSP(k ) 1s also called the power spectrum and

Y2 has the following nice features:

* It 1s dimensionless (computer coders, rejoice!)
- Physically, 1t 1s the contribution to variance per log wavenumber



Code-friendly power spectrum A42(k)

2otk = A g (5N () lagtarr o T

kpiv

A 1is the primordial amplitude (dimensionless, ~10-10)

v 1s the density of matter relative to critical

kpiv 18 some chosen pivot; modern convention 1s kpiv=0.05 Mpc-1
Ho 1s the Hubble constant
g(a) 1s the growth suppression factor

T'(k) 1s the transfer function, accounts mainly for “turnover” in power
spectrum due to radiation-matter transition.

Thi(k) 1s the prescription for nonlinear clustering; super important on
scales k = 0.1 h Mpc-!



