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Strong gravitational lensing

Multiple images of a single background object (e.g. galaxy)
seen

Lens can be another galaxy or cluster of galaxies - must be
massive!

Typical image separation: 1 arcsec (17)

Typical distance to lens: cosmological
(z~1)

Typical lens 1s halfway between
observer (us) and the source (1mages)

Typical probability of distant galaxy
being multiply-imaged: 1/1000

One observed “Einstein cross” lens



lllustration of strong lensing

g lensed image seen of

background galaxy
N Y S
“ i 4 % . background galaxy

- foreground galaxy

ALMA (ESO/NRAO/NAQJ), L. Calgada (ESO), Y. Hezaveh et al.




Weak Gravitational Lensing
by large-scale structure
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Galaxies randomly
distributed

Slight alignment

Image: E Grocutt, IfA, Edinburgh



Weak Gravitational Lensing

3
DN
_‘,(-\

S Credit: NASA. ESA and

R. Massey (Caltech)

Key advantage: measures distribution of matter, not light



http://www.lsst.org
http://www.lsst.org

E and B modes

each stick is the galaxy shear
(i.e. extra stretch due to lensing)

L /N
E-modes — Under — | e |
/ | N\ N/
—N 1=
B-modes / / \ AN
- — |

Gravity produces only the E-modes!!



E-modes
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Becker et al (DES collab), based on DES SV data; arXiv:1507.05598

(obsolete data, but just to illustrate the concept)



Weak Lensing and Dark Matter/Energy

WL measures integral over the line of sight:

PK(L”)=J dz — ) P(i,z>
o r@*H@ \r@)

galaxy shear distance, (dark) matter
clustering volume factors clustering

(measure) (theory—DM,DE) (theory—=DM,DE)

where

3 —
W) = = HyQu(1 +2)r(0) [dxsn%) s = 1)

r(xs)




Weak lensing summary:

* Pros:

* Sensitive to ALL matter!

* No bias! (recall Py = b2P)

* Sensitive to both geometry (distances) and
orowth of structure

* Cons:

* Lots of systematics! atmospheric
distortions and “rounding” of shapes;
intrinsic alignments, etc etc.



Galaxy-galaxy lensing

- Around each (foreground) galaxy, add up tangential
shear of background galaxies seen around it

- Should really be called galaxy-galaxies lensing
» Then stack signal of many such foreground galaxies
* Probes relatively small scales (~0.1 to ~10 Mpc)

* Much easier to do than shear-shear weak lensing:
higher signal-to-noise, fewer systematics

» Challenge: modeling theory (clustering - recall, this
includes bias) at small scales



image: LSST science book Combining cosmic shear (ss),
galaxy clustering(gg), and galaxy-
shearedimage  galaxy lensing (gs) into “3x2” type
/ measurement

9

(positions of
foreground galaxies;
4 redshift bins)

(shear of
background galaxies;

5 redshift bi
redshilt bins) “3x2 (point-function)” gg gs
clustering measurements: gsS SS
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DES 3x2 results: Qn-Ss plane

. o, |03
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DES Y1
096 1 Planck (No Lensing) |
DES Y1 + Planck (No Lensing)
0.88 —
0.80 —
_ +0.030
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o Ss = 0.7737 026

Abbott et al, arXiv:1708.01530
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Basic statistics

P(X) >0 non-negativity

Let P(X) be probability (likelithood) of / > P(X)dX =1 normalization
some random (stochastic) variable X. oo

Then:
P(X2) = /P(X17X2)P(X1)4X1

marginalization
(over X1)

Lowest moment 1s the mean:

A (non-Gaussian) likelihood

n=X = (X) = / XP(X)dX (mean)
1 Xmedian
5 :/ P(X)dX (median)
dP g
d_X o =0 (mode)




Basic statistics

Variance (2nd moment):

@)

Var(X) = 0% = (X — p)?) = / (X — u)*P(X)dX (variance)

— OO

measures the width (squared) of the distribution

Higher moments:

(skewness) measures the asymmetry (the “skew”)

(kurtosis)  measures the peakedness (the “heavy tails”)



Estimators

Given N realizations (draws) of some random variable X, can you estimate the
properties of the distribution of X?

N
D im1 T

Example, to find the mean, a good estimator 1s: I[L —

N
N A2
Example, to find the variance, use: \//'E;”(X) — Zi:jl\gxz . K ) .

(Good properties of estimators: .
neob — hence one really wants to find+use a BUE

L. uan?S?d , , (Best Unbiased Estimator)
2. as minimal variance as possible

Most often we want a full Bayesian posterior distribution on cosmological parameters,
but

- sometimes we prefer to produce an estimator of a parameter, esp if it’s super time-
consuming to calculate it from a map (e.g. fnL which is calculated from the 3-pt

function in CMB)



Gaussian distribution

characterized by:

- mean u (or vector of us) S
- variance o2 (or cov. C) .
1D1im: ) i S - 34.1% 34.1%
1 1 /X —u\| =
P(X) = exp __< ) 3
() vV 27o? 2 o | o
nDim:
P(x) 1 = )€ (x = )
X) = exp | —=(X — X —
2m)n/2[det Oz TP | T2 T s

By FAR the most useful, simple, convenient distribution in cosmology. Notably:

Simplest® inflation predicts - and measurements so far indicate that
at large scales, L » 10 h-1Mpc (or, equivalently, early times like the CMB)

the universe is Gaussian to 1 part in 10,000 (!!!); fxL<5

Holy Grail for DESI, Euclid, WFIRST etc: 1s 1t Gaussian to 1 part in 100,0007??

*Single scalar field, always slow-rolls, in Einstein gravity....



Chi squared distribution

fr(x) ) .\’ﬁ;.-
0.5 i=1
If you add squares of k Gaussian I ]]::‘;
variables, you get a chi-squared 0.47 k4
distribution with k d.o.f. . — k=6
0.3+ ‘
2 2 2 T
Y:Xl_I_XQ_I_"'_I_Xk 0.2+
1 )
P(Y) — yk/2-1,-Y/2 0.11
(¥) 2k/2T(k /2)
0.0 : f f f % f i >
o 1 2 3 4 5 6 7 8 T

Important properties:
* mean 1s k

* variance 1s 2k

27
- for k>»1, looks like Gaussian! L oxexp |—= Z ( ) = exp [_Xz/ﬂ

By Geek3 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9884213

1. When X; are Gaussmn distributed, then

Simplest goodness-of-fit metric: )(2/dof 1 where dof k —Nparams-fit

2. If the density field 6 1s Gaussian-distributed, then

the power spectrum 1s chisq-distributed,;
in the CMB: asm are Gaussian, then each C; 1s chisq-distributed with d.o.f. = 2¢+1



The one we love the most 1s:

Likelihoods

L(x)

1

- - T —1 -

1

2
—X" /2
By de o P L2

“It’s Gaussian...” but whose likelihood 1s Gaussian (or non-G or whatever)?
What is x?

“Theory”

x = Cosmological parameters p

(e.g. 24, m,, os, etc)

£ 1s simply not Gaussian

0.72

1IN most cases

| | | |
DES Y1

Planck (No Lensing) |
DES Y1 + Planck (No Lensing)

0.24 0.30 0.36 0.42 0.4¢
Qm

DES Y1 3x2 paper,

Abbott et al.

*to a theorist

“Data*”
X = observable* quantities d

OR (e.g. P(k), &), dn/dInM(z), etc)

Usually ok to assume £ is Gaussian
by the Central Limit Theorem:
as n—ow, £ — Gaussian with c—ci/\n

20 1 [u] 4 DES Y1 fiducial
] Miﬂj_ﬂ_ﬂ_‘% — best-fit model
00 + +'H scale cuts
20 —
] * bbbttt
0o Wﬂiﬁw TCIEIT H

20 o

Oo_mlﬁmﬁﬁ%ﬁw ¥ +

.—.A#mﬁ—‘vﬁ-ﬁjﬂ ‘1*"‘1‘7“’1"*&7 rrm‘*'*"‘“‘wkf Frhy
00 4% 4 } DES Y1 shear paper,

T T o e LT T o o Troxel et al.

0 &y (107 arcr




Bayesian and Frequentist statistics

Lakers or Celtics? Real Madrid or Barcelona? Michigan or Ohio State?
Montagues or Capulets? Rock or Classical? Brazil or Argentina??

Bayesian or Frequentist???

* Frequentist: model 1s fixed, data are repeatable

Bayesian: data are fixed, model 1s repeatable

likelihood prior D = data

\\ //' M = model

P(M|D) = P(D%K(M)
\ ~.

\ ~.

posterior evidence

(Bayes’ theorem)




Bayesian and Frequentist statistics

- Bayesian: data are fixed, model is repeatable

* Frequentist: model 1s fixed, data are repeatable

Say Ho = (72 £ 2) km/s/Mpc. Then:

Bayesian: the posterior distribution for Ho has 68% if its integral between
70 and 74 km/s/Mpc. The posterior can be used as a prior on a new
application of Bayes' theorem.

Frequentist: Performing the same procedure will cover the real value of Ho
within the limits 68% of the time. But how do I repeat the same procedure
(generate a new Hp) if I only have one Universe?

Good references:

Bayesian: R. Trotta, “Bayes in the Sky”, https://arxiv.org/abs/0803.4089

Frequentist: Feldman & Cousins, “A Unified Approach to the Classical
Statistical Analysis of Small Signals”, https://arxiv.org/abs/physics/9711021

Example of one cosmology inference done both Bayesian and frequentist way: G. Efstathiou, “The
Statistical Significance of the Low CMB Multipoles”, https://arxiv.org/abs/astro-ph/0306431



https://arxiv.org/abs/0803.4089
https://arxiv.org/abs/physics/9711021
https://arxiv.org/abs/astro-ph/0306431

Bayesian and Frequentist statistics

- Bayesian:
*can given probabilities for models

* depends on both prior and likelihood (of data)
currently the dominant method in cosmology

* Frequentist:
*doesn’t give probabilities of models, only of hypotheses
* doesn’t depend on prior, just likelihood
 currently the dominant method in particle physics

likelihood prior D = data

\ / M = model

P(M]|D) = P(D%)DI;(M)
\ ~
\ S

posterior evidence

(Bayes' theorem)




Which credible intervals do you report?

The overwhelming convention in cosmology 1s to

* Report the peak (mode) value as the best fit. This 1s peak of the posterior
marginalized over all other parameters

* Report the (asymmetric) + error bars that encompass 68.3% (and 95.4% and
99.7% of posterior volume around the peak.

For a Gaussian distribution, ytlec region encompasses 68% of likelihood volume.

For a non-Gaussian it doesn’t,
but we are supposed to always calculate the latter (68%) even
when we lazily speak about the former
that 1s, in general you don't quote “sigma” (error) by calculating sqrt(variance).

So0... how exactly DO you get the 68.3% (and 95.4% and 99.7%) region?
Let's be super explicit!



How to calculate confidence level

Start from the peak of the posterior
"lower the water level” until you encompass 68% of the likelihood volume

How to get the 68% C.L. interval

1.0

Likelihood




Fisher information matrix

*for a theorist

“Theory” “Data™”
x = Cosmological parameters p x = observable* quantities d
(e.g. 2,4, m,, o3, etc) OR (e.g. P(k), &(r), dn/dInM(z), etc)
006 L | | | DIES Y1 | ‘“": + + {  DES V1 fiducial
DES Y1 + ?iiﬁfﬁi Eﬁfﬁ iiﬁ:iﬁﬁi 00 ”‘HTHMWHW E(e:ltef;tu Eodel
,/g 2.0 —
088 - T v% 0.0 — WMW Mﬁﬁjﬁmﬂ
5 S |C AR
0.80 - go.l)—ww e {
20 K
' ' ' ' DES Y1 3x2 paper, O O R A
0.24 0.30 o 0.36 0.42 0.4¢ Abbott et al. 8 (arcmin) 0 0 0 DES Y1 shear paper,
Troxel et al.

...what are errors in

theory parameters? <> Given data error bars...

Normally this requires simulations (Monte-Carlos) to evaluate;
very time-consuming and noisy

Fisher matrix is a semi-analytical tool that gives answers instantaneously,
and without stochastic noise.



Fisher information matrix

5 It's the curvature matrix
oo 0“In L (negative Hessian)
2 api @p . of negative log likelihood
Step 1: J around 1ts peak

For a Gaussian likelihood (in parameters pi) this evaluates to (regmark, Taylor, Heavens 1997)

1
F?,j — I[/LEZ;C_llLL’j —|— iTr[C_lc”iC_lC’j]

If the mean of the data depends on pi, then first term 1s nonzero
If the covariance of the data depends on pi, then second term is nonzero

= For clustering statistics in LSS, typically the latter,
as u=(6)=0, while C = P(k) or &(r)

Step 2: Then, the Cramer-Rao inequality says:

vV (F~1);  (marginalized)
) >
o(pi) 2 1/v/F;;  (unmarginalized)




Fisher information matrix

1 ( vV (F~1);;  (marginalized)

_ Ty—-1, 1 I P |
Fz’j — :u,z'C pg =+ QTI[C C,ZC C,J] o(pi) = <\ 1/v/F;;  (unmarginalized)
Couple of examples:
1. Type Ia supernovae, where y = m(z, Qm, £24...) = m(zn, {pi}), then
NgNe (assuming
FSNe - i 1 am(zn) 6m(zn) uncorrelated errors
/N U%n Op; 8]03' that
n=1 don't depend on p;)

2. Weak gravitational lensing, where ,u = 0 but C = shear power spectrum, then

DCH(0) . _, dCH (1)
FWL 1
7 E I, Cov o,

0
Where Cov [Cc’jb (5)7 C?d (f)] - (2€ +1 ;efsky AV

Cac(O)Cpa(€) + Coa(O)Cpe (0] -



Fisher information matrix

How do you marginalize over some parameters? Easy!

. Calculate the original NxN Fisher matrix F

. Take 1ts 1nverse, get F-1

. Pick a subset (e.g. 2x2 submatrix), call 1t G

. Invert G-1 to get G

. G 1s your new Fisher matrix, marginalized over other params

ol H~ W N

How do you plot a contour 1n 2D parameter plane? Easy!
(2.3 (68.3%)

G11p% + 2G12p1p2 + G22p3 — AX% dof = ¢ 0.2 (95'4%) )
1.8 (99.7%)

\

It's an ellipse (always in the Fisher approximation) 1f




Fisher information matrix

Want area of ellipse?

= Ax(det F)l/2

Want best-constrained directions?
= diagonalize F

Want to add independent constraints?
=> add their Fs (<multiply likelihoods)

Want to add a prior on i-th parameter p;?

= add 1/(cprior)? to its Fii (diag) element

2 ———————
L_Weak lensing

L CMB (Planck)

) R S —
-1.5

. D. Huterer, Fisher forecast_ circa 2000

Yo

Want to see how much the parameters shift due to a (small) shift in the data??
=> use the Fisher bias formula

. 12 C%
\ foonf

parameter bias blased value

C”"K(AJOV Cr(0),

oCs(¢)
(9pj

true (fiducial) value

Extremely useful: super fast and not subject to stochastic noise



Markov Chain Monte Carlo (IMCMC)

Planck No Lensing
DES Y1

The challenge: map out a posterior DES Y1+Planck No Lensing
in multi-dimensional parameter space.

Example: say there are just 10 parameters. =
Lets say calculation takes just 1 second/model. |
Say you want a grid with 20 values in each par.

Then <

N — 2010 ~ 1013 L

= 1t would take 300,000 years to do 1t! |
= Totally impossible, ever!! % oo

0.24 0.30 0.36 0.42 0.56 0.64 0.72 0.80 —-1.8 —-1.4 -1.0 —-0.6 0.70 0.75 0.80 0.85 0.90
Qm h w SS

DES Y1 extensions paper (Abbot et al 2019);
the full param-space is 25-dimensional!

Amazingly clever, efficient solution to the problem:
Instead of gridding, sample!
"Walk" through the parameter space 1n a clever way 1n order to map out the
likelihood “banana” just enough.

= MCMUC, invented at Los Alamos National Lab in 1950s.



MCMC:
the Metropolis-Hastings algorithm

» at step t, at some parameters p+
» propose move to p:i'=pt+4pt (randomly draw Ap:)

» evaluate r = L(pt’)/L(pt)
» MH step:
» 1f r > 1 accept move
» 1f r < 1 generate a random number o« € [0, 1]

» 1f « < r, accept move _ 1D illustration of MH step

1.0

» 1f « > r, reject move
» t=t+1

Likelihood

One can prove that,

with this rule,
one asymptotically recovers the 2.2 -
true posterior

\

—

0 1 2 3 a
Parameter p



[1lustration of the
Metropolis-Hastings algorithm

Starting point
weight = 1




MCMUC: 1interpreting the output

f [ (

WElgHT | o | T | T ?N\
= 0.2

21-03]om| 2 ¢\
\ \ 0.2 ) 0.4 |D.12 N NS
| 2 2,3 | D.\ \D.l% N e

~ - -, - N\ ~ -0 —~ ~ - '

(,\, Milligy ROWS)

To get the posterior probability,
simply histogram the parameter values vs weights - this 1s your posterior!

Want to look at posterior in ps marginalized over all other parameters?
Simply plot histogram of ps values vs weight (eaaasy!)

MCMUC is an incredibly clever, powerful set of algorithms
without which data-driven cosmology wouldn't have gotten far.



Suggested further reading

“Statistics in theory and practice", book by Robert Lupton

“Numerical Recipes - the Art of Scientific Computing", Press, Teukolsky,
Vetterling & Flannery

“A practical guide to Basic Statistical Techniques for Data Analysis in
Cosmology", L. Verde, arXiv:0712.3028, and Statistical methods in
Cosmology", arXiv:0911:3105

"Unified approach to the classical statistical analysis of small signals",
G.dJ. Feldman and R.D. Cousins, PRD, 57, 3873 (1998)

“Bayes in the sky: Bayesian inference and model selection in cosmology",
R. Trotta, arXiv:0803.4089

Wikipedia - really good for looking up properties of functions,
distributions, and other “math”.



