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How can GW help to probe cosmology?
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GW can bring information from the early universe:

phenomena occurring in the early universe can produce
stochastic GW backgrounds (SGWB)

test of the early universe and high energy phenomena



How can GW help to probe cosmology?
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The GW signal from binaries travels through the FLRW
spacetime: it can be used to probe the
late-time dynamics and the content of the universe

test of accelerated expansion, test of GR at large scales



Summary of the course

e LECTURE 1: GW definition, GW energy momentum tensor,
GW in FLRW space-time, GW equation of motion

« LECTURE 2: SGWB from the early universe: generalities

« LECTURE 3: SGWB from the early universe: examples of
sources

e LECTURE 4: GW emission from binaires: generalities

e LECTURE 5: GW emission from binaries: probe of the
universe expansion

C.C. and D.G. Figueroa, “Cosmological backgrounds of GWs”, arXiv:1801.04268



What are gravitational waves?

e GWs emerge naturally in General Relativity:

Newtonian theory + special relativity = a causal theory of gravitation

There must be some form of radiation propagating information causally:
GWs!

e “waves” in physics are propagating perturbations over a background. In
General Relativity:

1. take a background space-time metric (the gravitational field)
2.
3. insert it into the equations that describe the space-time dynamics

define a small perturbation over this background metric

(Einstein equations)

. (if everything goes well) one finds a dynamical solution for the

perturbation which is propagating as a wave -> GWs!

Which background metric to choose?
Simplest choice: flat space-time



GWs in linearised theory over Minkowski

g,ul/(x) = Tuv -+ h,ul/(aj) 9 |h/u/(55)‘ <1

Linearise in hyy , raise and lower indices with nuy

Affine connection ~ I'* = %(@Vhau +9,h", — 0%h,,) + O(h?)

i 1
Stensor Bus = 5(0.0,h%5 + 050 by, — 0,0%hus — 050,h°,)

tensor

1 _ _
Gy 5(5’aﬁyho‘u + 0%y hye — Ohyy — 1,00,0° Ry)

Einstein
tensor

B o _ 1 trace-reversed
= 0,0 hyw = hyy — 577,u1/ h metric perturbation
(OK - still small)

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008



GWs in linearised theory over Minkowski

g,ul/(x) = TNuv -+ h,ul/(aj) 9 |h,u1/(33)‘ <1

Linearise in hyy , raise and lower indices with nuy

Affine connection ~ I'* = %(@Vhau +9,h", — 0%h,,) + O(h?)

- 1
Riemann - po (0,0,h% 5 + D% hy, — 8,0%h,s — Dpd,h™,)

tensor v = 5

Einstein 1 — Ve T _
tensor GMV = 5(604th v +0 8uhuoz @ nuyﬁaé’ﬁh 5)

G,uu = 871Gy T,uu — we would like to set 8“?@“” (:l’:) =0



GWs in linearised theory over Minkowski

g,ul/(x) = TNuv -+ h,u,I/(Qj) 9 |h,u1/(33)‘ <1

GR is invariant under general coordinate transformation

the linearised theory is invariant under
infinitesimal (slowly varying) coordinate transformation

x't — at 4 ¢H o, (27) = hy (2) = 0u&y — Oy

0aép| S lhasl —  |B),(2)] < 1

0" hy (z) — G’MB:W(Q;’) = 0" hy () — U8,

By a suitable coordinate transformation, it is o'+ B/ (:,I?/) —0
always possible to go to the LORENTZ GAUGE i



GWs in linearised theory over Minkowski

IN LORENTZ GAUGE EINSTEIN EQUATIONS TAKE
THE FORM OF A WAVE EQUATION!

h,uy — 167TG TMV Tpv source energy
momentum tensor

From the Lorentz gauge condition O" f_zlw (a:) =0 one gets

O T, = 0

The energy-momentum tensor of the source is conserved
the source does not loose energy and momentum by the GW emission

in linearised theory, the background space-time is flat, i.e. the source is
described by Newtonian gravity

linearised theory does not describe how GW emission influences the source



GWs in linearised theory over Minkowski

IN LORENTZ GAUGE EINSTEIN EQUATIONS TAKE
THE FORM OF A WAVE EQUATION!

h,uy — 167TG T,uy Tpv source energy
momentum tensor

iLW/ = iL,/M o h/w (:C) =0 — 6 radiative components

WAIT! ARE THESE ALL PHYSICAL?

't — -+ f H satisfying & y = 0 to remain in the Lorentz gauge

By — hyy + &0 with &y = 0% — 046 — 00€,

IF IN VACUUM: 'h,, =~ O(huy + &u) =0
Ty =0




GWs in linearised theory over Minkowski

Restricting to vacuum space-time, the residual coordinate
freedom can be used to fix 4 constraints

TRANSVERSE TRACELESS GAUGE

h’u — O h()z‘ — O 6ﬂhz] =0
hoo = 0

come for free
There are only 2 remaining physical degrees of freedom in the metric

b @ @ @@@ Exercise:
solve
h

Einstein
equations

and write the
h, line element
in TT gauge

h—|—7



Are we happy with this definition? So so...

To exhibit the two physical d.o.f. of GWs we had to restrict to vacuum

However, the fact that GWs have only two physical components is a
manifestation of the intrinsic nature of the gravitational interaction,
mediated by the graviton, a spin-two massless field that has only two
independent helicity states

It should be true also in space-time with matter!

WHAT WE DO NEXT:

ek

. Drop the condition of empty space-time

2. Exploit the invariance of Minkowski space-time under spatial rotations,
and split the metric perturbation into irreducible components under
rotations (scalar, vector, tensor)

3. Construct metric perturbation variables that are invariant under
infinitesimal coordinate transformations

4. Find the metric perturbation variable that obeys a wave equation -> we

define GWs in non-vacuum space-times



GWs in linearised theory over Minkowski, with matter

2. Exploit the invariance of Minkowski space-time under spatial rotations,
and split the metric perturbation into irreducible components under
rotations

g,ul/(x) = Nuv - h,ul/(w) ; ‘huy(iﬁ)‘ <1

hoo = —2¢
hoi = 0;B+S; (0;5; =0)

1
hij = —2¢di; +(0:0; — §5ijv2)E + 0 F; + 0;Fi + Hy;
scalars vectors tensor
¢7 B) %E Si? FZ HZ

E.E. Flanagan and S.A. Hughes, “The basics of GW theory”, arXiv:gr-qc/0501041
“Space-time and geometry: an introduction to GWs”, S. Carroll, Pearson Education Limited, 2014

“The Cosmic Microwave Background”, R. Durrer, Cambridge University Press, 2008



GWs in linearised theory over Minkowski, with matter

3. Construct metric perturbation variables that are invariant under
infinitesimal coordinate transformations

NSt W (@) = hy () — D& — D1,

= (80, &) = (do, 0id + dy) with 0;d; =0
Two scalars, one vector and one tensor physical variables

d=¢p+B—E/2

= -2 — V°E/3
H;, with 0;H;; =0 H} =0 5775

16 free functions - 6 contraints - 4 constraints =
6 physical degrees of freedom



GWs in linearised theory over Minkowski, with matter

1. Drop the condition of empty space-time

Too = p
Toi = Oiu+u; (Oiu; =0)
1
Tij — p(Sij -+ (6’183 — §5ijv2)0' + 5’in + 83-@7; -+ Hz’j

(&L-vi — O, @Hw — O, Hm — O)

scalars vectors tensor

p, U, P, 0 Ug, Uy Hij

energy-momentum conservation: four further constraints
(OK since we are still in linearised theory!)

0, T" =0

16 free functions - 6 contraints - 4 constraints =
6 physical degrees of freedom



GWs in linearised theory over Minkowski, with matter

4. Find the metric perturbation variable that obeys a wave
equation -> we define GWs in non-vacuum space-times

Write Einstein equations in terms of the 6 gauge invariant variables

V20 = —81Gp  V?® =47G (p + 3p — 34)
VY, = —167GS,; H;; = —167G 11

Three Poisson-like equations, one wave equation
Only the TT metric components are radiative

Exercise:
find the
differences
with
cosmological
perturbation
theory



GW energy-momentum tensor and GW propagation

According to GR, any form of energy contributes to space-time curvature
Are GWs a source of space-time curvature?

e One needs to go beyond linearisation over Minkowski, otherwise one
excludes from the beginning the presence of any background space-time
curvature

G (z) = Guv () + hyw () h(2)] < 1

 In this new setting, how to decide what is the background and what is
the fluctuation?

1. The background space-time has a clear symmetry (static, FLRW...)
2. It is possible to resort to a clear separation of scales/frequencies

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008
E.E. Flanagan and S.A. Hughes, “The basics of GW theory”, arXiv:gr-qc/0501041
R.A. Isaacson, Physical Review, Volume 166, number 5, pages 1263 and 1272, 1968



GW energy-momentum tensor and GW propagation

\ f typical length-scale / _ ¢
’ frequency of the GWs f

typical scale of spatial variations /
frequency of time variations of the
Lp ’ f B background
(needn’t be related among themselves)

e There are two expansions in the game:

A
1. |hu| <1 2. — <1, f—B<<1

Lp f

 In order to effectively implement the distinction among background and
GWs, one needs to average physical quantities

Examples: GW
ALl K Lg eI f detectors? GW
from the early

universe?



GW energy-momentum tensor and GW propagation

Expand up to second order in |h /w‘ <1

The linear term
averages to zero

I = R/w + R;(}v) ™ RLQV)

\_/ The quadratic term can influence
[ ]low the background, as it contains

(o) = [ both high and low modes

Background R — [_R(Q)]low LsralT — 1 " low
Einstein equation py = my w5 Juv
GWs sourcing the Matter sourcing the

/ bckg curvature bckg curvature

A

2 h <
LG 7

Necessary condition for GW to make sense



GW energy-momentum tensor and GW propagation

Rearranging Einstein equation at order zero, calculating R(),,
and performing the average leads to:

_ 1
G = (Ruv) — §gW<R> = 8nG((Tyw) + TA(L;VW)

ha'ad -— e
Dynamics of the Low-mode part GWs
bckg space-time of the matter
component not separately
conserved!

GW energy-momentum tensor in the TT gauge (all gauge freedom removed)

1 1 1
TGW _ 2) 1. p@)y _ he VRO
13 % S} <R,LW 29# R > 3273 <V,LL Bv >
 (high")
PGW = 327G

C.W. Misner, K.S. Thorne, J.A. Wheeler, “Gravitation”, Freeman 1997 (chapter 35.15)



GW energy-momentum tensor and GW propagation

Expand up to second order in |h /w‘ <1

The linear term
averages to zero

I = RMV + Rﬁblv) ™ R/(f,/)

\_/ The quadratic term can influence
[ ]low the background, as it contains

() = [ both high and low modes

Perturbed
Einstein equation

, 1 high
Rf}y) — [—Rfﬁ)]hlgh + 871G [Tw/ — igWT}

Matter possibly

2 sourcing GWs
h
Ol —

Negligible
(non-linear interaction of
the wave with itself)



GW propagation equation
1. The matter produces only smooth curvature of the background

T =0 —> R =

VoV h + 2R uan,hP — MLO‘” _ ﬁ/hw _ 0

h h3
0 (_) or O (_)
2 2
L2 A
Effects due to the propagation of GWs on a curved background

such as gravitational redshift and lensing

NOTE: if the background is flat space-time (a part from the
curvature generated by the GWs themselves) one goes back to h py = 0




GW propagation equation

2. The matter has high-mode components [Tw/]high 7é 0

1 _ .
(1) _ g g -~ high
\P/ W
Evolution of GWs on a curves but Possible source of GWs
smooth / slowly evolving
background

In a FLRW universe, equation of sourcing and propagation of GWs
ds® = —dt* + a*(t) (6;; + hs;) dx'da?
Oihij = hii =0

. . \V£:
hij(X,t) -+ SHhij(X,t) — T 5

hij(x,t) = 16mG 11;;(x, 1)
a



GW propagation equation

COMMENTS

 In the rest of the course, we will be dealing with solutions of the above
equation

e [t can be derived also from cosmological perturbation theory, here I
presented the connection with a more general approach

 In cosmology, the FLRW space-time is homogeneous and isotropic, so
tensor modes can be defined also when A ~ Lg (exemple: horizon re-

entry after inflation), but one cannot say these are GWs, unless modes
are well within the horizon (A « Lg)



