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LECTURE 5
GW emission from binaries: probe of the universe
expansion



Using GWs to measure the background
expansion of the universe
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e Hubble factor, written for one specific model of dark energy
e No contribution from radiation, negligible in the late universe

z g=1
dL(Z) — (1 + Z) Q (/O H(Z’)) Flat space hyper

surfaces

Measuring the luminosity distance as a function of redshift provides
access to the cosmological parameters, in particular Ho at low redshift

z < 1 cz= Hydp(2) Hubble law



Using GWs to measure the background

expansion of the universe
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e Remarkable agreement if ones thinks that the two methods measure physical
phenomena that are 13 billion years apart

e Not enough in the era of precision cosmology

e Does this require new physics?

J.M. Ezquiaga and M. Zumacalaregui, arXiv:1807.09241 Nissanke et al, arXiv:1307.2638



Measurement of di(z): standard candles

Nobel prize in physics 2011:
discovery of the late-time acceleration of the universe
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Measurement of di(z): standard candles

Nobel prize in physics 2011:
discovery of the late-time acceleration of the universe
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Flux measured directly
Intrinsic luminosity known from
calibration

Measurement of the luminosity
distance is NOT SO EASY
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Measurement of dp(z): standard sirens

GW emission by compact binaries
can also be used to test the expansion of the universe

B. Schutz, Nature 323, 310 (1986)



Measurement of di(z): standard sirens

GW emission by compact binaries
can also be used to test the expansion of the universe

e Measurement of the luminosity

distance: no calibration needed,
EASY AND DIRECT

e Measurement of the redshift:
IMPOSSIBLE!

B. Schutz, Nature 323, 310 (1986)



Inspiral of compact binaries at cosmological distance

To reach the observer:
® free propagation in
FLRW space-time
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we have solved within
linearised theory over
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Inspiral of compact binaries at cosmological distance

20
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Propagation effect at
the observer

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008



Inspiral of compact binaries at cosmological distance
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Still measured by the source clock, fS _ fO(l 4 Z) Do = P

we want it in the observer’s clock

The phase is constant
along null geodesics

to
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“Gravitational Waves”, M. Maggiore, Oxford University Press 2008



Inspiral of compact binaries at cosmological distance
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Redshifted chirp mass



Inspiral of compact binaries at cosmological distance
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time to coalescence at the observer
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Inspiral of compact binaries at cosmological distance

s (1, 6,0) = (5 (G M (P (55 cos(20(r)
hy(T,0,0) = d:tz) (G M )2Irf(1)]?/3 cos B sin(2®(7))

What happens to the relation expressing the time variation of the frequency?
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Measurement of di(z)
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e From f and f measure
the redshifted chirp
mass

e From the ratio among
h+ and hx measure the
inclination of the orbit

e Get a direct
measurement of dp
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Inspiral of compact binaries at cosmological distance

Note that in general the redshift is not constant, and in certain cases GW
observation can be precise enough to be sensitive to redshift variation
to
ao . .
14+ 2= — 1—|—V5-n—VO-n—|—\Ifo—\Ifs—/ dt(q)—F\If)]

a/S tS

1. The background expansion of the universe varies during the time of
observation of the binary

2. The redshift perturbations vary in time during the time of observation of the
binary

These terms lead to a -4PN effect

in the phase of the signal, and a

variation in the amplitude, which
are proportional to

HS VS-H
+
14+2. 1+ 2z,

1
Y(Zc):§ Hy — — Vo n

A. Nishizawa et al, arXiv:1110.2865
C. Bonvin et al, arXiv:1609.08093



Inspiral of compact binaries at cosmological distance

Note that in general the redshift is not constant, and in certain cases GW
observation can be precise enough to be sensitive to redshift variation
ao to . .
14+2=— 1—|—V5-n—VO-n—|—\Ifo—\Ifs—/ dt(q)—F\If)]

a/S tS

1. The background expansion of the universe varies during the time of
observation of the binary

2. The redshift perturbations vary in time during the time of observation of the
binary

These terms lead to a -4PN effect

in the phase of the signal, and a

variation in the amplitude, which
are proportional to

1

The peculiar acceleration dominates the effect, hiding the dependence on the
cosmological parameters, so it doesn’t work
But at least one can measure the peculiar acceleration of the binary...

K. Inayoshi et al, arXiv:1702.06529 N. Tamanini et al, arXiv:1907.02018 A. Toubiana et al, arXiv:2010.06056



Measurement of di(z)

M. = (1+2)M,

How can we break this degeneracy and use GW emission to
build the Hubble diagram di(z)?

There are a few methods to obtain the redshift information,
depending on the nature of the source and on the detector

Direct method: directly identify the galaxy hosting the event, via the
measurement of a (transient) electromagnetic counterpart

Statistical method: cross-correlate the sky position given by the GW
measurement with galaxy catalogues

Assume that one knows the intrinsic mass of the object



Measurement of di(z)

M. = (1+2)M,

How can we break this degeneracy and use GW emission to
build the Hubble diagram di(z)?

There are a few methods to obtain the redshift information,
depending on the nature of the source and on the detector

e Direct method: directly identify the galaxy hosting the event, via the
measurement of a (transient) electromagnetic counterpart

- Earth-based interferometers: sources with counterparts are
NS-NS binaries and perhaps NS-BH binaries

- LISA: sources with expected counterparts are massive BH-BH
binaries at the centre of galaxies



Measurement of di(z)

M. = (1+2)M,

How can we break this degeneracy and use GW emission to
build the Hubble diagram di(z)?

There are a few methods to obtain the redshift information,
depending on the nature of the source and on the detector

e Statistical method: in the absence of a counterpart, one can cross-
correlate with a galaxy catalogue to associate to the GW event a
group of galaxies with redshift compatible with the redshift range
inferred from the GW measurement with priors on the cosmological
parameters. One then searches for the unique set of cosmological
parameters aligning each event on the same dL(z) relation

- Earth-based interferometers: this method can be used with
stellar mass BH-BH binaries (the most numerous sources)

- LISA: this method can be used with stellar mass BH-BH
binaries and Extreme Mass Ratio Inspirals (EMRIs)

McLeod and Hogan, PDR77 043512 (2008)



Measurement of di(z)

M= (1+2)M.

How can we break this degeneracy and use GW emission to
build the Hubble diagram di(z)?

There are a few methods to obtain the redshift information,
depending on the nature of the source and on the detector

e Assume that one knows the intrinsic mass of the object: one can then
infer the redshift of the event

- this method can only be used with NS-NS mergers

- one can assume that the mass function for the NS is known
and uses it as a priori information, or that its equation of
state is known

- this method works only with the next generation earth-based
detectors (ET, CE)

Messenger and Read, arXiv:1107.5725 Taylor and Gair, arXiv:1204.6739



GW170817, the first ever standard siren

Direct method with

Neutron star binary merger at 40 Mpc

seen by LIGO/Virgo, and independently

as a gamma-ray burst by Fermi.
An optical transient followed allowing
identification of the host galaxy

Hy = 7031;2 kms™Mpc™

LIGO/Virgo, arXiv:1710.05935
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Earth based detectors

LIGO/Virgo et al, arXiv:1710.05883
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Direct method with Earth based detectors

GW170817, the first ever standard siren

e The measurement of Ho is not yet competitive with CMB and SNIa, but it is fully
independent from them

e GW170817 allowed constraints on fundamental physics: speed of light, Lorentz
invariance violation, equivalence principle. These have in turn be used to constrain
modified gravity theories

e The measurement of Ho is expected to get below the 10 percent level by 2030 with the
current earth-based detectors network (forecasts depend on the NS binary rates)

e ET and CE will in principle turn into cosmological probes of other cosmological
parameters, since they can detect many more events and at higher redshift
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Statistical method with Earth based detectors

 Not competitive with counterpart method as the statistic is low (LV runs O1+02)
* The completeness of the galaxy catalogue is the main limitation concerning the
statistical method
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Direct method with LISA

Massive BH binaries mergers are expected to have counterparts if they
occur in gaseous disks at the centre of galaxies (the rate of these events is
uncertain though)

The counterpart is expected in the radio emission, followed by optical
identification of the host galaxy

One must select events with high SNR and good sky localisation (few!)
Weak lensing (and peculiar velocity errors) affect the measurement of d.
The precision on the determination of HO is expected to be of a few percent
LISA offers the opportunity to test the cosmic expansion at high redshift

L6A2MS5SN2

[l 26.4 Heavy seeds (delay)
0 404 Heavy seeds (no delay)

B e - z redshift z

Tamanini et al, arXiv:1601.07112 Speri et al, arXiv:2010.09049



Statistical method with LISA

12

[t can be applied to sources for
which no counterpart is expected:

stellar origin BHB and EMRIs
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The advantage of LISA

LISA could provide sub-percent measurement of Ho as well as
constraints on the expansion of the universe at high redshift by
combining the results of the three categories of standard sirens

Example of possible LISA cosmological data

100 -
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Stellar mass

MPBHB:s

dr (Gpc)

10

N. Tamanini, arXiv:1612.02634



To summarise:

GWs emission from compact binaries provide clean measurements of the
luminosity distance which does not require calibration

The construction of the Hubble diagram di(z) can be performed with and
without electromagnetic counterpart

One can then determine Ho in a way which is fully independent of both CMB
and SNIa

The network of Earth-based interferometers has already started to provide
results, especially thanks to GW170817

LISA will offer the opportunity to test the expansion at high redshift

The future is bright in what concerns GWs as a cosmological probe of the
late expansion of the universe, and the construction of the Hubble
diagram with GWs will help pinning down the present tension on the
measurement of the Hubble constant



