Exercises for CMB physics Lecture 4 (analytic solutions of the Boltzmann equation)

Yacine Ali-Haïmoud
(Dated: January 21, 2021)

Exercise 1:

We derived the following equation in the tight-coupling regime:

$$
\begin{equation*}
c_{s}^{2} \frac{\partial}{\partial \eta}\left[c_{s}^{-2} \dot{\delta}_{\gamma}\right]+k^{2} c_{s}^{2} \delta_{\gamma}=0, \quad c_{s}^{2}(\eta) \equiv \frac{1}{3}\left(1+\frac{3}{4} \frac{\bar{\rho}_{b}}{\bar{\rho}_{\gamma}}\right)^{-1} \tag{1}
\end{equation*}
$$

Our goal is to look for an approximate solution in the limit $a H \ll k$, using the fact that the sound speed varies on a timescale $\sim 1 / a H \gg 1 / k$. For reference, this is known as the WKB approximation.

We look for a solution of the form

$$
\begin{equation*}
\delta_{\gamma}(\eta)=A(\eta) \cos \left[k \int_{0}^{\eta} d \eta^{\prime} c_{s}\left(\eta^{\prime}\right)\right] \tag{2}
\end{equation*}
$$

- Plugging into the ODE for δ_{γ}, derive the ODE satisfied by $A(\eta)$.
- Assuming $\dot{A} / A \sim a H$ and $\ddot{A} / \dot{A} \sim a H$, derive the leading-order equation for $A(\eta)$, i.e. to lowest order in $a H / k$.
- Find the analytic solution for your ODE for $A(\eta)$.

Exercise 2:

In class we only talked about the tight-coupling approximation, which is the zero-th order of an expansion in $k /|\dot{\tau}|, a H /|\dot{\tau}|$, where $\dot{\tau} \equiv-a N_{e} \sigma_{\mathrm{T}}$. Working in the limit $k \gg a H$, try to get to the next order in $k / \dot{\tau}$, by following the steps outlined below - note that this is a somewhat advanced calculation, so you should be very proud if you get throught it!
(i) From the baryon fluid equation, express $\vec{v}_{b}-\vec{v}_{\gamma}$ in terms of photon fluid variables, by seeking an expansion of the form

$$
\begin{equation*}
\vec{v}_{b}=\vec{v}_{\gamma}+\frac{k}{\dot{\tau}} \vec{V}^{(1)}+\left(\frac{k}{\dot{\tau}}\right)^{2} \vec{V}^{(2)}+\ldots \tag{3}
\end{equation*}
$$

[For reference, during the lecture we already derived $\vec{V}^{(1)}$.
(ii) Write down the fluid equation for the photon anisotropic stress, of the form

$$
\begin{equation*}
\dot{\sigma}_{\gamma}^{i j}+\ldots=-\# a N_{e} \sigma_{\mathrm{T}} \sigma_{\gamma}^{i j} \tag{4}
\end{equation*}
$$

(iii) From this equation, solve for $\sigma_{\gamma}^{i j}$ at first order in $k / \dot{\tau}$, and express it in terms of \vec{v}_{γ}. [during the lecture we simply assumed $\left.\sigma_{\gamma}^{i j}=0\right]$. You should get an expression of the form

$$
\begin{equation*}
\sigma_{\gamma}^{i j} \propto \frac{k}{\dot{\tau}}\left(\hat{k}^{i} v_{\gamma}^{j}-\frac{1}{3} \delta^{i j} \hat{k} \cdot \vec{v}_{\gamma}\right) . \tag{5}
\end{equation*}
$$

(iv) Plug back into the photon momentum equation. You should now have an equation for a damped harmonic oscillator.

Exercise 3:

Compute explicitly the following integrals, by using spherical polar coordinates with \hat{k} as the z axis, and then show that they are indeed related to the spherical Bessel functions:

$$
\begin{equation*}
\int \frac{d^{2} \hat{n}}{4 \pi} \mathrm{e}^{i \kappa \hat{k} \cdot \hat{n}}, \quad \int \frac{d^{2} \hat{n}}{4 \pi} \hat{n} \mathrm{e}^{i \kappa \hat{k} \cdot \hat{n}} \tag{6}
\end{equation*}
$$

Exercise 4:

Define the transfer function for the variable $X(\vec{k}, \eta, \hat{n})$ as the linear relation between X and the primordial curvature perturbation:

$$
\begin{equation*}
X(\vec{k}, \eta, \hat{n})=\mathcal{T}(\eta, k, \hat{k} \cdot \hat{n}) \zeta(\vec{k}) \tag{7}
\end{equation*}
$$

We moreover defined, in the lecture,

$$
\begin{equation*}
\tilde{\Theta}_{\text {obs }}(\hat{n})=\int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{T}_{\Theta}(k, \hat{k} \cdot \hat{n}) \zeta(\vec{k}) \tag{8}
\end{equation*}
$$

By using the line-of-sight integral (and expressing the integrand in Fourier space), explcitly relate $\mathcal{T}_{\Theta}(k, \hat{k} \cdot \hat{n})$ to the transfer functions of ϕ, ψ and S_{Θ}.

