Exercises IV Joint ICTP School on Cosmology

lecture 02

January 19, Valerie Domcke

1 - Slow roll equation of motion. (4pt) Consider the action of a real scalar field,

$$
\begin{equation*}
S=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} M_{P}^{2} R^{2}-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right), \tag{1}
\end{equation*}
$$

with $\sqrt{-g}=\left(-\operatorname{det} g^{\mu \nu}\right)^{1 / 2}$.
(a) Simplify Eq. (1) assuming in a flat FRW space time for a homogeneous scalar field, i.e. $\phi(t, \vec{x})=\phi(t) .(2 \mathrm{pt})$
(b) Use the Euler-Lagrange formalism,

$$
\frac{\partial \mathcal{L}}{\partial \phi}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}=0,
$$

where $S=\int d^{4} x \mathcal{L}$ to obtain the equation of motion

$$
\begin{equation*}
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}(\phi)=0 \quad(2 \mathrm{pt}) \tag{2}
\end{equation*}
$$

2 - Inflation models. (7 pt)

(a) Consider an inflation model determined by $V(\phi)=\lambda \phi^{n}$ in Eq. (2). Using the slow-roll approximation, compute the value of ϕ where inflation ends. (2 pt)
(b) Solving the horizon problem requires about 60 e-folds of inflation. What was the value of $\phi 60$ e-folds before the end of inflation? (2 pt)
(c) Re-write Eq. (2) as a differential equation in e-folds instead of cosmic time, $d N=-H d t$ (1 pt)
(d) The so-called Starobinsky model, $V(\phi)=V_{0}\left(1-\exp \left[-\sqrt{\frac{2}{3}} \phi\right]\right)^{2}$, gives a particular good fit to the CMB data collected by the PLANCK satellite. Using your favourite computer program, plot $V(\phi)$ and $\phi(N)$ What is the range of ϕ over which the last 60 e-folds occur? (3 pt)

[^0]
[^0]: ${ }^{1}$ You can hand in a simple sketch of these plots, but please put axis labels and units.

