# Exercises IV Joint ICTP School on Cosmology 

## lecture 03

January 20, Valerie Domcke

1 - Wronskian condition (3 pt). Consider a real scalar quantum field $\hat{\phi}(\tau, \vec{x})$ and its conjugate momentum $\hat{\pi}(\tau, \vec{x})$. Using the Fourier decomposition of both $\phi$ and $\phi$, show that the quantum uncertainty relation

$$
\begin{equation*}
[\hat{\phi}(\tau, \vec{x}), \hat{\pi}(\tau, \vec{y})]=i \hbar \delta(\vec{x}-\vec{y}) \tag{1}
\end{equation*}
$$

implies the Wronskian condition

$$
\begin{equation*}
\frac{i}{\hbar}\left(\phi_{k}^{*} \pi_{k}-\pi_{k}^{*} \phi_{k}\right)=1 \tag{2}
\end{equation*}
$$

2 - Mukhanov equation (4pt). Consider the Mukhanov equation

$$
\begin{equation*}
v_{k}^{\prime \prime}+\left(k^{2}-\frac{z^{\prime \prime}}{z}\right) v_{k}=0 \tag{3}
\end{equation*}
$$

with $z=a \dot{\phi} / H$. Use your favourit computer programm to plot the solution of this equation in a de Sitter background from $\tau_{0}=-100 / k$ to $\tau=-0.1 / k$, with the initial condition $\left|v_{k}\left(\tau_{0}\right)\right|=1 / \sqrt{2 k}$ and $v_{k}^{\prime}\left(\tau_{0}\right)$ determined by (2). Describe and interpret the two qualitatively different regimes you observe.

## 3 - Tensor perturbations (8 pt)

(a) The second order action for the tensor perturbation of the metric is given by

$$
\begin{equation*}
S_{\mathrm{EH}}^{(2)}=\frac{M_{P}^{2}}{8} \int d \tau d^{3} x a^{2}(\tau)\left[\left(h_{i j}^{\prime}\right)^{2}-\left(\partial h_{i j}\right)^{2}\right] \tag{4}
\end{equation*}
$$

Show that the equation of motion for the Mukhanov Sasaki variable $v_{k}^{(s)}=\frac{a}{2} M_{P} h_{k}^{(s)}$ in Fourier space is given by

$$
\begin{equation*}
\left(v_{k}^{(s)}\right)^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right) v_{k}^{(s)}=0 \tag{5}
\end{equation*}
$$

Note: use the Fourier expansion $h_{i j}(t, \vec{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{s=+, \times} \epsilon_{i j}^{s}(\vec{k}) h_{\vec{k}}^{s}(\tau) e^{-\vec{k} \vec{x}}$ with the polarization tensor $\epsilon_{i j}$ obeying $k^{i} \epsilon_{i j}=0$ and $\epsilon_{i j}^{s} \epsilon_{i j}^{s^{\prime}}=2 \delta_{s s^{\prime}}$. Here $s$ denotes the two possible polarizations of the tensor perturbation. (2pt)
(b) Following the procedure for scalar perturbations in the lecture, determine the Bunch Davies intitial condition for $v_{k}^{(s)}$ at $\tau \rightarrow-\infty$. (1 pt)
(c) Solve Eq. (5) with this initial condition. (1pt)
(d) Determine the two point function $\left\langle h_{k}^{(s)} h_{k^{\prime}}^{\left(s^{\prime}\right)}\right\rangle$ for super horizon modes, $k \ll a H$. (2pt)
(e) Assuming statistical isotropy and homogeneity, the two point function is given by

$$
\begin{equation*}
\left\langle h_{k}^{(s)} h_{k^{\prime}}^{\left(s^{\prime}\right)}\right\rangle=(2 \pi)^{3} \delta_{s s^{\prime}} \delta\left(\vec{k}-\vec{k}^{\prime}\right) P_{h}(k) . \tag{6}
\end{equation*}
$$

Determine $P_{h}(k) .(2 \mathrm{pt})$
(f) Compute the relative strength of the scalar and tensor perturbations, determined by the tensor-to-scalar ration $r \equiv \Delta_{t}^{2} / \Delta_{\mathcal{R}}^{2}$. CMB experiments have measured $\Delta_{\mathcal{R}}^{2}$ but only provide an upper bound on $r$. What does this imply for inflation models? (2 pt)

