Exercises IV Joint ICTP School on Cosmology lecture 03

January 20, Valerie Domcke

1 - Wronskian condition (3 pt). Consider a real scalar quantum field $\hat{\phi}(\tau, \vec{x})$ and its conjugate momentum $\hat{\pi}(\tau, \vec{x})$. Using the Fourier decomposition of both ϕ and ϕ , show that the quantum uncertainty relation

$$[\hat{\phi}(\tau, \vec{x}), \hat{\pi}(\tau, \vec{y})] = i\hbar\delta(\vec{x} - \vec{y}), \qquad (1)$$

implies the Wronskian condition

$$\frac{i}{\hbar}(\phi_k^*\pi_k - \pi_k^*\phi_k) = 1.$$
 (2)

2 - Mukhanov equation (4pt). Consider the Mukhanov equation

$$v_k'' + (k^2 - \frac{z''}{z})v_k = 0, \qquad (3)$$

with $z = a\dot{\phi}/H$. Use your favourit computer programm to plot the solution of this equation in a de Sitter background from $\tau_0 = -100/k$ to $\tau = -0.1/k$, with the initial condition $|v_k(\tau_0)| = 1/\sqrt{2k}$ and $v'_k(\tau_0)$ determined by (2). Describe and interpret the two qualitatively different regimes you observe.

3 - Tensor perturbations (8 pt)

(a) The second order action for the tensor perturbation of the metric is given by

$$S_{\rm EH}^{(2)} = \frac{M_P^2}{8} \int d\tau d^3 x a^2(\tau) \left[(h'_{ij})^2 - (\partial h_{ij})^2 \right] \,. \tag{4}$$

Show that the equation of motion for the Mukhanov Sasaki variable $v_k^{(s)} = \frac{a}{2}M_P h_k^{(s)}$ in Fourier space is given by

$$(v_k^{(s)})'' + \left(k^2 - \frac{a''}{a}\right)v_k^{(s)} = 0.$$
 (5)

Note: use the Fourier expansion $h_{ij}(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \sum_{s=+,\times} \epsilon^s_{ij}(\vec{k}) h^s_{\vec{k}}(\tau) e^{-\vec{k}\vec{x}}$ with the polarization tensor ϵ_{ij} obeying $k^i \epsilon_{ij} = 0$ and $\epsilon^s_{ij} \epsilon^{s'}_{ij} = 2\delta_{ss'}$. Here s denotes the two possible polarizations of the tensor perturbation. (2pt)

- (b) Following the procedure for scalar perturbations in the lecture, determine the Bunch Davies intitial condition for $v_k^{(s)}$ at $\tau \to -\infty$. (1 pt)
- (c) Solve Eq. (5) with this initial condition. (1pt)

(d) Determine the two point function $\langle h_k^{(s)} h_{k'}^{(s')} \rangle$ for super horizon modes, $k \ll aH$. (2pt)

(e) Assuming statistical isotropy and homogeneity, the two point function is given by

$$\langle h_k^{(s)} h_{k'}^{(s')} \rangle = (2\pi)^3 \delta_{ss'} \delta(\vec{k} - \vec{k'}) P_h(k) \,.$$
 (6)

Determine $P_h(k)$. (2 pt)

(f) Compute the relative strength of the scalar and tensor perturbations, determined by the tensor-to-scalar ration $r \equiv \Delta_t^2 / \Delta_R^2$. CMB experiments have measured Δ_R^2 but only provide an upper bound on r. What does this imply for inflation models? (2 pt)