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MODIFICATIONS TO GRAVITY

• Assume classical Newtonian gravity, add another term

• If force carrier is massive→ Yukawa potential

• Between two point massesm1 andm2:

V(r) = −Gm1m2

r

(
1+ αe−r/λ

)
• Strength: α, length-scale: λ

• Just a particular parameterization
• Allows comparison across a huge number of scales
• Investigating any deviations from V ∝ (1/R) is interesting
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THE LANDSCAPE OF MEASUREMENTS

• Slightly outdated, but tells most of the story
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MEASURING GRAVITY (AT SHORT RANGE)
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MEASURING GRAVITY AT SHORT RANGE (WITH MICROSPHERES)

• Proposed by Geraci et al.

• Position a microsphere within
an optical cavity

• Introduce a source mass with
modulated density

• Move the source mass and
look for a correlated signal PRL 105, 101101 (2010)
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OPTICAL TWEEZERS

• Invented by Arthur Ashkin at Bell Labs
in the early 1970s

• First trapped particles in a liquid
• Suggested vacuum operation, then
demonstrated

• First implementation of feedback
• Predicted all sorts of things

Appl. Phys. Lett. 30, 202 (1977)
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OPTICAL TWEEZERS, ASHKIN STYLE

• Vertically oriented optical trap
• For our system:
• Single-beam, 1064 nm
• r = 2.5− 3.8 µm silica microspheres

• Gravity stabilizes vertical direction

• Radial forces deflect outgoing beam
• Use microsphere as test mass

Fopt ≈ ϵ
Popt
c

∆θ ∼ 1 fN
(

Popt
mW

)(
∆θ

mrad

)
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THE FULL OPTICAL SYSTEM

• One beam to rule them all: trapping, feedback, imaging
• Two interferometric measurements for transmitted and retroreflected light
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ELECTROSTATIC SHIELDING

• Stray electric fields represent
a significant background

• There are six identical
shielding electrodes making a
cubical cavity

• Bore holes for optical and
mechanical access

• Can drive known electric
fields to calibrate
microsphere response
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CALIBRATING THE SYSTEM

• Microsphere is usually charged after trapping→ Discharge with UV photons
• Can see response to an oscillating electric field decrease in steps
• Unit step size corresponds to a single electron

PRL 113, 251801 (2014)
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INSIDE THE CHAMBER

A Electrode housing

B Collimating
parabolic mirror

C PBS Cube

D Focusing parabolic
mirror

E Bead dropper
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SCHEMATIC DEPICTION OF A SHORT-RANGE FORCE MEASUREMENT
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MICROSPHERE MASS MEASUREMENT

• Co-levitate with electrostatic field, extrapolate to find mass∑
Fz = Fopt,z(t) + qEz(t)−mg = 0

PRApplied 12 024037 (2019)
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DIRECT RADIUS MEASUREMENT

• “Catch” microspheres after they’re trapped (surprisingly hard)

• Transfer to SEM on amechanical probe, normally used for inducing forces
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CALCULATION OF DENSITY

• First direct characterization of levitated particle density

• Much different than fused silica andmanufacturer provided number
• ρSiO2 = 2.2− 2.4 g/cm3 and ρBangs = 1.8 g/cm3

MS m (pg) r (µm) ρ (g/cm3)

No. 1 84.04± 0.80 (stat.)± 1.52 (sys.) 2.348± 0.038 1.550± 0.080

No. 2 83.87± 1.14 (stat.)± 1.51 (sys.) 2.345± 0.037 1.554± 0.079

No. 3 85.48± 0.17 (stat.)± 1.54 (sys.) 2.355± 0.038 1.562± 0.081
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DECIDED TO USE LARGER MICROSPHERES

• Expected radius seems to be
consistent with manufacturer
(they sell them by size)

• Given: r = 3.78± 0.1 µm
• Meas: r = 3.76± 0.1 µm

• Implies ρ ≈ 1.85 g/cm3

• Thus, just need to measure
the mass and we “know
everything”
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ATTRACTOR TO PROBE GRAVITATIONAL INTERACTIONS

• Custom, in-house fabrication of attractor
• Au-filled trenches in Si cantilever

• Sputter gold layer over the surface to minimize residual electrostatics

IEEE ECTC 274 (2017)
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ANOTHER ELECTROSTATIC SHIELD

• Similar in-house fabrication of all-silicon shield

• Sputtered gold layer for equipotential
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RECALL...
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THE ATTRACTOR, SHIELD, AND MICROSPHERE

• It helps to actually
see relative positions
between the objects

• Remove the
redundant ‘pocket’
feature of the shield
to expose
microsphere

• Can align and
calibrate positions of
mechanical devices
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A SCRIPT FOR THE MEASUREMENT

1. Trap microsphere

2. Discharge/calibrate

3. Position devices near MS

4. Drive attractor along density
modulation to excite signal

5. Once microsphere is lost, register
positions of devices relative to
trapping
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THE SIMULATED SIGNAL

• Analytic function for
yukawa-modified gravity between
sphere and point mass

• Partition attractor mass into unit
cells (point masses)

• Add up signal from all unit cells

21



A TYPICAL AMPLITUDE SPECTRAL DENSITY

• Attractor driven at a
frequency f0 = 3 Hz

• Expected response
appears at
harmonics of f0

• Repeat 10 s
measurement 104

times

• Plot shows average
of 100 such meas.
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INTERPRETING THE MEASURED RESPONSE

• Clearly there is a background visible in some harmonics...

• Pick harmonics where signal strength is greater than strength of fundamental
• Ignore f0, 2f0 (non-linearity), and 30 Hz
• Left with 6 harmonics, each an independent measurement

• Using a maximum likelihood parameter estimation, determine best-fit values of α,
for each λ and harmonic fi
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A DRIFTING BACKGROUND

• We see a background
force

• Does NOT look like
gravity

• Different α̂ for
different harmonics

• Drifts in time
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WHAT DO YOU DOWITH A BACKGROUND?

BEST Mitigate the underlying problem

OKAY Include well-informed backgroundmodel into
parameter estimation

UNFORTUNATE Make conservative estimate acknowledging
presence of and limitation induced by the
background

UNACCEPTABLE Subtract the background
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ROBUST AND CAUTIOUS STATISTICAL PROCEDURE

• Basic procedure is testing a null hypothesis: do we see a signal consistent with a
new interaction? or just noise?

• With a robust backgroundmodel, a profile-likelihood procedure is ideal

• Have to modify the test-statistic to acknowledge presence of background, but
without a well-defined backgroundmodel:

qα,i =

−2 log
(

Li(α,λ)
Li(α̂i,λ)

)
α ≥ α̂i

0 α < α̂i

, (1)

arXiv:2102.06848v1
Eur. Phys. J. C 71, 1554 (2011)
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LIMIT IN α− λ PARAMETER SPACE

• Eliminating backgrounds
immediately gets us an
order of magnitude

• Many near-term
improvements planned
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ELECTRICALLY DRIVEN ROTATION

PRA 97 041802(R) (2019)

• Residual dipole moment
• Dipole aligns with field
• Rotate field→ rotate microsphere

• Residual birefringence
• Modulation of cross-polarized power at 2 · ω0
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UNDERSTANDING THE ELECTROSTATIC BACKGROUND

• Assume freely-spinning dipole

• Time-average couples to
gradient induced by contact
potential on attractor

• Include in profile-likelihood
estimation

• Reduces tensions with prior
“null” measurements
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FORCE-FIELD MICROSCOPY

• Microsphere response known
in all 3 directions

• Change positions (and biases)
of attractor and shield

• Measure full vector
force-field: F⃗(x, y, z)

• With and without spinning

PRA 99 023816 (2019)
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MANY-PIXEL PHOTODIODE

• Develop a rudimentary image
of the scattered light

• May allow discrimination
between actual motion and
light scattered by motion of
nearby objects (i.e. the
attractor)
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REDUCING THE NOISE

• Similar apparatuses have
demonstrated exceptional
performance recently

• Assuming same acceleration
sensitivity for our sphere sizes

• σF ≤ 1× 10−18 N/
√

Hz

PRA 101, 053835 (2021)
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PASSIVE SCATTERED LIGHT SUPPRESSION

• Cover surfaces with optically
black coatings

• Colloidal graphite

• Vacuum deposition of porous
metal matrices

33



PASSIVE MECHANICAL STABILIZATION (READ: LOTS OF STEEL)

• Improve flanges and
optical windows

• Stabilize mechanical
supports within
chamber
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ROTARY ATTRACTOR

• Reciprocating
motion seems to
cause too many
backgrounds

• Take advantage of
rotation

• Get to collaborate
with watch makers!
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SUMMARY

• Optically levitated
microsphere used as a
precision force sensor

• First test of gravity with
this type of apparatus

• Many improvements to
be made!
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THANK YOU FOR YOUR ATTENTION!

QUESTIONS?
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