First search for new long range forces at the micron scale using optically levitated microspheres

Charles Blakemore, Stanford University

10 June 2021

Challenges for Witnessing Quantum Aspects of Gravity in a Lab, ICTP-SAIFR

EVERYTHING IS A TEAM EFFORT

From left to right: Qidong Wang Giorgio Gratta Brandon Sandoval **CB**

Alex Rider Alex Fieguth Denzal Martin Nadav Priel Akio Kawasaki

OVERVIEW

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system
- 2. Test- and source-mass characterization
 - Mass/radius measurements
 - Attractor and shield fabrication
- 3. Searching for non-Newtonian gravity
 - The measurement, the backgrounds, and resultant limits
 - Future improvements

MODIFICATIONS TO GRAVITY

- Assume classical Newtonian gravity, add another term
- If force carrier is massive \rightarrow Yukawa potential
- Between two point masses m_1 and m_2 :

$$V(r) = -\frac{Gm_1m_2}{r}\left(1 + \alpha e^{-r/\lambda}\right)$$

- Strength: $\alpha \text{, length-scale: } \lambda$
 - Just a particular parameterization
 - Allows comparison across a huge number of scales
 - Investigating any deviations from $V \propto (1/R)$ is interesting

• Slightly outdated, but tells most of the story

MEASURING GRAVITY (AT SHORT RANGE)

- Proposed by Geraci et al.
- Position a microsphere within an optical cavity
- Introduce a source mass with modulated density
- Move the source mass and look for a correlated signal

PRL 105, 101101 (2010)

OVERVIEW

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system
- 2. Test- and source-mass characterization
 - Mass/radius measurements
 - Attractor and shield fabrication
- 3. Searching for non-Newtonian gravity
 - The measurement, the backgrounds, and resultant limits
 - Future improvements

OPTICAL TWEEZERS

F

- Invented by Arthur Ashkin at Bell Labs in the early 1970s
 - First trapped particles in a liquid
 - Suggested vacuum operation, then demonstrated
 - First implementation of feedback
 - Predicted all sorts of things

are still free to rotate. Thus optical levitation with feedback has many potential applications, for example, in laser fusion experiments,² construction of ultracentrifuges, study of photoemission,⁵ and measurement of gravity forces. This feedback scheme has features in

Appl. Phys. Lett. 30, 202 (1977)

OPTICAL TWEEZERS, ASHKIN STYLE

- Vertically oriented optical trap
 - For our system:
 - Single-beam, 1064 nm
 - $r = 2.5 3.8 \,\mu{
 m m}$ silica microspheres
- Gravity stabilizes vertical direction
- Radial forces deflect outgoing beam
 - Use microsphere as test mass

$$F_{opt} pprox \epsilon rac{P_{opt}}{c} \Delta heta \sim 1 \ {
m fN} \ \left(rac{P_{opt}}{{
m mW}}
ight) \left(rac{\Delta heta}{{
m mrad}}
ight)$$

THE FULL OPTICAL SYSTEM

A

- One beam to rule them all: trapping, feedback, imaging
- Two interferometric measurements for transmitted and retroreflected light

Rev. Sci. Instrum. 91, 083201 (2020)

ELECTROSTATIC SHIELDING

- Stray electric fields represent a significant background
- There are six identical shielding electrodes making a cubical cavity
- Bore holes for optical and mechanical access
- Can drive known electric fields to calibrate microsphere response

CALIBRATING THE SYSTEM

- Microsphere is usually charged after trapping \rightarrow Discharge with UV photons
- · Can see response to an oscillating electric field decrease in steps
- Unit step size corresponds to a single electron

PRL 113, 251801 (2014)

INSIDE THE CHAMBER

- A Electrode housing
- B Collimating parabolic mirror
- C PBS Cube
- D Focusing parabolic mirror
- E Bead dropper

SCHEMATIC DEPICTION OF A SHORT-RANGE FORCE MEASUREMENT

OVERVIEW

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system

2. Test- and source-mass characterization

- Mass/radius measurements
- Attractor and shield fabrication
- 3. Searching for non-Newtonian gravity
 - The measurement, the backgrounds, and resultant limits
 - Future improvements

$$\sum F_z = F_{ ext{opt},z}(t) + qE_z(t) - mg = 0$$

PRApplied 12 024037 (2019)

DIRECT RADIUS MEASUREMENT

- "Catch" microspheres after they're trapped (surprisingly hard)
- Transfer to SEM on a mechanical probe, normally used for inducing forces

- · First direct characterization of levitated particle density
- Much different than fused silica and manufacturer provided number

- $ho_{\mathrm{SiO}_2}=$ 2.2 - 2.4 g/cm³ and $ho_{\mathrm{Bangs}}=$ 1.8 g/cm³

MS	<i>m</i> (pg)	<i>r</i> (μm)	ho (g/cm ³)
No. 1	$84.04\pm0.80({\rm stat.})\pm1.52({\rm sys.})$	$\textbf{2.348} \pm \textbf{0.038}$	1.550 ± 0.080
No. 2	$83.87 \pm 1.14 ({\rm stat.}) \pm 1.51 ({\rm sys.})$	$\textbf{2.345} \pm \textbf{0.037}$	1.554 ± 0.079
No. 3	$85.48\pm0.17({\rm stat.})\pm1.54({\rm sys.})$	2.355 ± 0.038	1.562 ± 0.081

- Expected radius seems to be consistent with manufacturer (they sell them by size)
 - + Given: $\mathit{r} =$ 3.78 \pm 0.1 μ m
 - Meas: $\textit{r} = 3.76 \pm 0.1\,\mu\text{m}$
- + Implies $\rho\approx 1.85~{\rm g/cm^3}$
- Thus, just need to measure the mass and we "know everything"

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system

2. Test- and source-mass characterization

- Mass/radius measurements
- Attractor and shield fabrication
- 3. Searching for non-Newtonian gravity
 - The measurement, the backgrounds, and resultant limits
 - Future improvements

ATTRACTOR TO PROBE GRAVITATIONAL INTERACTIONS

- Custom, in-house fabrication of attractor
 - Au-filled trenches in Si cantilever
- Sputter gold layer over the surface to minimize residual electrostatics

IEEE ECTC 274 (2017)

ANOTHER ELECTROSTATIC SHIELD

- Similar in-house fabrication of all-silicon shield
- Sputtered gold layer for equipotential

RECALL...

THE ATTRACTOR, SHIELD, AND MICROSPHERE

- It helps to actually see relative positions between the objects
- Remove the redundant 'pocket' feature of the shield to expose microsphere
- Can align and calibrate positions of mechanical devices

OVERVIEW

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system
- 2. Test- and source-mass characterization
 - Mass/radius measurements
 - Attractor and shield fabrication
- 3. Searching for non-Newtonian gravity
 - The measurement, the backgrounds, and resultant limits
 - Future improvements

- 1. Trap microsphere
- 2. Discharge/calibrate
- 3. Position devices near MS
- 4. Drive attractor along density modulation to excite signal
- Once microsphere is lost, register positions of devices relative to trapping

THE SIMULATED SIGNAL

- Analytic function for yukawa-modified gravity between sphere and point mass
- Partition attractor mass into unit cells (point masses)
- Add up signal from all unit cells

- Attractor driven at a frequency $f_0 = 3 \text{ Hz}$
- Expected response appears at harmonics of f₀
- Repeat 10 s measurement 10⁴ times
- Plot shows average of 100 such meas.

NO ATTRACTOR MOTION vs ATTRACTOR MOVING EXPECTED MOD. GRAV. RESPONSE

- Clearly there is a background visible in some harmonics...
- Pick harmonics where signal strength is greater than strength of fundamental
 - Ignore f_0 , $2f_0$ (non-linearity), and 30 Hz
 - Left with 6 harmonics, each an independent measurement
- Using a maximum likelihood parameter estimation, determine best-fit values of α , for each λ and harmonic f_i

A DRIFTING BACKGROUND

- We see a background force
- Does NOT look like gravity
- Different â for different harmonics
- Drifts in time

- BEST Mitigate the underlying problem
- OKAY Include well-informed background model into parameter estimation

UNFORTUNATE Make conservative estimate acknowledging presence of and limitation induced by the background

UNACCEPTABLE Subtract the background

ROBUST AND CAUTIOUS STATISTICAL PROCEDURE

- Basic procedure is testing a null hypothesis: do we see a signal consistent with a new interaction? or just noise?
- With a robust background model, a profile-likelihood procedure is ideal
- Have to modify the test-statistic to acknowledge presence of background, but without a well-defined background model:

$$q_{\alpha,i} = \begin{cases} -2\log\left(\frac{\mathcal{L}_i(\alpha,\lambda)}{\mathcal{L}_i(\hat{\alpha}_i,\lambda)}\right) & \alpha \ge \hat{\alpha}_i \\ 0 & \alpha < \hat{\alpha}_i \end{cases}, \tag{1}$$

arXiv:2102.06848v1 Eur. Phys. J. C **71**, 1554 (2011)

LIMIT IN $\alpha - \lambda$ parameter space

- Eliminating backgrounds immediately gets us an order of magnitude
- Many near-term improvements planned

OVERVIEW

1. Introduction

- Measuring gravity at short range
- Optical tweezers and our system
- 2. Test- and source-mass characterization
 - Mass/radius measurements
 - Attractor and shield fabrication

3. Searching for non-Newtonian gravity

- The measurement, the backgrounds, and resultant limits
- Future improvements

ELECTRICALLY DRIVEN ROTATION

PRA **97** 041802(R) (2019)

Residual dipole moment

- Dipole aligns with field
- Rotate field \rightarrow rotate microsphere
- Residual birefringence
 - Modulation of cross-polarized power at 2 \cdot ω_0

UNDERSTANDING THE ELECTROSTATIC BACKGROUND

- Assume freely-spinning dipole
- Time-average couples to gradient induced by contact potential on attractor
- Include in profile-likelihood estimation
- Reduces tensions with prior "null" measurements

FORCE-FIELD MICROSCOPY

- Microsphere response known in all 3 directions
- Change positions (and biases) of attractor and shield
 - Measure full vector force-field: $\vec{F}(x, y, z)$
- With and without spinning

PRA 99 023816 (2019)

MANY-PIXEL PHOTODIODE

- Develop a rudimentary image of the scattered light
- May allow discrimination between actual motion and light scattered by motion of nearby objects (i.e. the attractor)

REDUCING THE NOISE

- Similar apparatuses have demonstrated exceptional performance recently
- Assuming same acceleration sensitivity for our sphere sizes
- $\sigma_F \leq 1 \times 10^{-18} \, \mathrm{N}/\sqrt{\mathrm{Hz}}$

PRA 101, 053835 (2021)

- Cover surfaces with optically black coatings
- Colloidal graphite
- Vacuum deposition of porous
 metal matrices

- Improve flanges and optical windows
- Stabilize mechanical supports within chamber

ROTARY ATTRACTOR

- Reciprocating motion seems to cause too many backgrounds
- Take advantage of rotation
- Get to collaborate with watch makers!

SUMMARY

- Optically levitated microsphere used as a precision force sensor
- First test of gravity with this type of apparatus
- Many improvements to be made!

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?