Quantum field theory and the Bieberbach conjecture

AHMADULLAH ZAHED

CHEP, IISC BANGALORE

STRINGS 2021

BASED ON PHYS. REV. LETT. 126, 181601 (2021) WITH ANINDA SINHA

AND

ARXIV:2103.12108 [HEP-TH] WITH PARTHIV HALDAR, ANINDA SINHA

The Bieberbach conjecture

The Bieberbach conjecture tells us how fast the Taylor expansion coefficients of a holomorphic univalent function, on the unit disc(|z| < 1) grows, namely

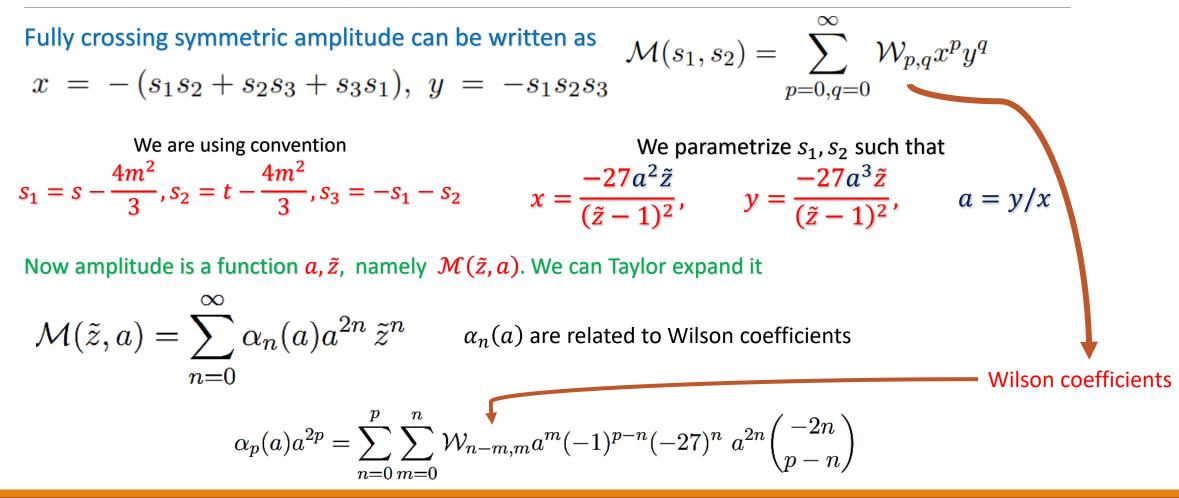
$$f(z) = z + \sum_{p=2}^{\infty} b_p z^p \quad |b_n| \le n, \qquad \forall n \ge 2$$

The Koebe growth theorem gives us two sided bounds on |f(z)|

$$\frac{|z|}{(1+|z|)^2} \le |f(z)| \le \frac{|z|}{(1-|z|)^2}$$

A function is univalent on a domain D if it is holomorphic, and one-to-one, i.e. for all $z_1, z_2 \in D$, $f(z_1) = f(z_2)$ if $z_1 = z_2$.

Fully crossing symmetric amplitude



Quantum field theory and the Bieberbach conjecture

Crossing symmetric dispersion relation

$$\mathcal{M}(\tilde{z},a) = \alpha_0 + \frac{1}{\pi} \int_{\frac{2\mu}{3}}^{\infty} \frac{ds'_1}{s'_1} \mathcal{A}\left(s'_1; s^{(+)}_2\left(s'_1, a\right)\right) H\left(s'_1, \tilde{z}\right) \longrightarrow H(s'_1, \tilde{z}) = \frac{27a^2\tilde{z}\left(2s'_1 - 3a\right)}{27a^3\tilde{z} - 27a^2\tilde{z}s'_1 - (1 - \tilde{z})^2\left(s'_1\right)^3} \longrightarrow A(s_1; s_2) \text{ is the s-channel discontinuity}$$

Crossing symmetric dispersion relations and unitarity enable us to prove the followings

 $\left|\frac{\alpha_n(a)a^{2n}}{\alpha_1(a)a^2}\right| \le n, \quad \forall n \ge 2$

1) The Bieberbach bound

Remember that amplitude

$$\mathcal{M}(\tilde{z},a) = \sum_{n=0}^{\infty} \alpha_n(a) a^{2n} \, \tilde{z}^n$$

2) The Koebe two sided bound on amplitude

$$\frac{|\tilde{z}|}{(1+|\tilde{z}|)^2} \le \left| \frac{M(\tilde{z},a) - \alpha_0}{\alpha_1(a)a^2} \right| \le \frac{|\tilde{z}|}{(1-|\tilde{z}|)^2}$$

3) For small *a*, the
$$\frac{M(\tilde{z},a) - \alpha_0}{\alpha_1(a)a^2}$$
 is Univalent

The bounds on Wilson coefficients

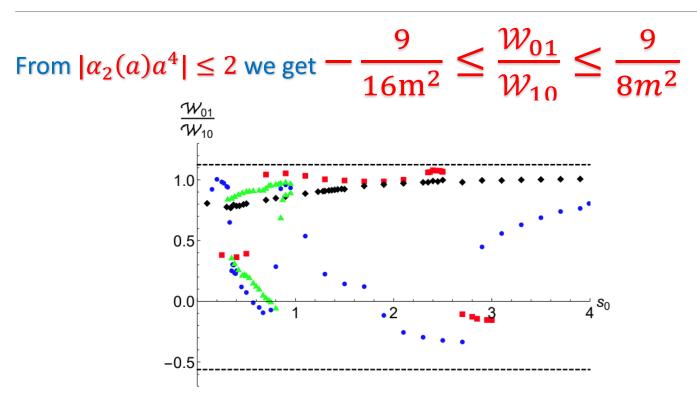


Figure 3: Ratio of $\frac{W_{0,1}}{W_{1,0}}$ obtained from the S-matrix bootstrap. The horizontal axis is the Adler zero s_0 . The green points are for the pion lake [19]. The blue and red points are for the upper and lower river boundaries [20, 21] while the black points are for the line of minimum averaged total cross section S-matrices [21].

The bounds on Wilson coefficients

On going work by Aninda, Prashant shows more tighter bounds on Wilson coefficients using the theory of Typically Real Univalence functions

$w_{p,q} = \frac{W_{p,q}}{W_{1,0}}$	TR_U	SDPB	Pion
w ₀₁	-0.5625	-0.5625	-0.335
w_{11}	-0.13186	-0.1318	-0.846
w_{02}	-0.089	-0.1268	-0.056
w_{20}	0	0	
w_{21}	-0.025955	-0.25955	-0.0157
w_{12}	-0.0223	-0.02789	-0.0121
w_{30}	0	0	0.001236
w_{03}	-0.00664	-0.00156	-0.24303
w_{31}	-0.0047	-0.0047	-0.000515
w_{40}	0	0	0.000091
w_{50}	0	0	

$w_{p,q} = \frac{W_{p,q}}{W_{1,0}}$	TR_U	SDPB	Pion
w_{01}	1.125	1.939	1.07
w_{11}	0.105	0.216	0.0918
w_{02}	0.0396	0.0296	0.0182
w_{20}	0.140625	0.140625	
w_{21}	0.0183	0.023	0.005995
w_{12}	0.013735	0.0111	0.06525
w_{30}	0.0197	0.0197754	0.017065
w_{03}	0.00712	0.0071	0.004636
w_{31}	0.00884	0.00218	0.0027
w_{40}	0.00278	0.00278	0.00228
w_{50}	0.000391	0.000391	

Lower bounds

Upper bounds

Thank You