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General Relativity is one of the prime examples of effective field theory describing  
the low energy regime of quantum gravity.

As such it has beautifully succeeded in making precise predictions at scales we  
can measure with our technology.

As technology progresses, so does the precision of our detectors. While quantum  
measurements are still out of reach, we can nowadays test GR to an  unprecedented 
precision, expected to increase over the coming years!



This brings up to major problems, patent over the last 100 years.

1) How do we solve Einstein’s equations for realistic dynamical processes?

2) What are the observables of GR (as an EFT) we should be discussing?



P1) In order to devise exact solutions in GR a high amount of symmetry is implemented  
(stationary or static/cylindrical or spherical/various degrees of SUSY, etc….)

from Ehlers and Kundt, "Exact solutions of the gravitational field  equations" (1962)



These solutions, albeit remarkable, fall short in describing more realistic time  
dependent scenarios, such as the perturbation of a BH background by a non-  
spherical wave, or the merger of two BHs!



P2) The main observables of QFT are scattering amplitudes. They have so far  driven 
the success of predictions at large particle accelerators such as LHC.

Such a framework is infamously not applicable to quantum gravity due to UV  
divergences which make scattering amplitudes incapable of generating  predictions.



Instead, in GR one considers a seemingly unrelated set of observables for  
different processes: light-bending angles, polarizations, radiated gravitational  
fluxes, time delays, etc



But most of these observables are extremely difficult to compute in realistic situations.  
For instance, in the case of GW mergers we need to rely on a subtle combination of 
analytic methods (the so-called Post-Newtonian or PN theory) and numerical relativity. 
The PN theory in turn relies on a perturbative approach to solve Einstein’s equations. But 
these equations are highly non-linear and PN estimates become increasingly cumbersome 
as more precision is required.



But most of these observables are extremely difficult to compute in realistic situations.  
For instance, in the case of GW mergers we need to rely on a subtle combination of 
analytic methods (the so-called Post-Newtonian or PN theory) and numerical relativity. 
The PN theory in turn relies on a perturbative approach to solve Einstein’s equations. But 
these equations are highly non-linear and PN estimates become increasingly cumbersome 
as more precision is required.

Note that the situation is reminiscent of (and indeed closely related to) the evaluation of a 
high number of Feynman diagrams when dealing with precision scattering of 
fundamental particles!



Goal of the talk

To give you a flavor of how scattering amplitudes in QFT can be used to 
define and compute (classical) observables of GR. Moreover, such observables 
characterize dynamical escenarios such as BH perturbations and the two-body 
problem.

They are free from UV divergences since they are defined from a classical limit of the  
scattering amplitude; involving low exchange momentum. Classically, we expect to 
describe dynamics at distances greater than the Schwarzschild radius.

In this regime we can fully trust GR as an EFT, and indeed we can compute 
observables to  high  accuracy in G/r with exact dependence on the relative 
velocities of the bodies.  We will refer to such a scheme as the Post-Minkowskian 
(PM) approach.



The relevant scattering amplitudes can be computed using novel on-shell methods. This 
enforces unitarity in the underlying quantum theory, bypassing the evaluation of (tons 
of) Feynman diagrams. Such a powerful tool is completely ‘invisible’ if we just attempt 
to solve Einstein’s equations perturbatively.

This effectively provides a new analytical window into perturbation theory in GR, opening 
the door for new and exciting predictions!
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To begin with, we will be interested in observables that can be 
measured at far distances for asymptotically flat spacetimes.

Consider a perturbative approach 

The radiative part of the metric will be measured at  null 

infinity via

for an effective source including both matter and (non-linear) gravitational  

contributions.



The metric itself is not an observable. However, we can encode the gauge invariant  information from 

the radiative data into a classical amplitude. Consider the null tetrad

Here parametrizes a direction in the celestial sphere with  

tangent complex vectors .



The metric itself is not an observable. However, we can encode the gauge invariant  information from 

the radiative data into a classical amplitude. Consider the null tetrad

Here parametrizes a direction in the celestial sphere with  

tangent complex vectors .

For algebraically special spacetimes (type D or N) it is enough to  

consider the Newman-Penrose amplitude of helicity 2, given by



The scattering amplitude is obtained by considering the classical limit of the graviton 

emission in QFT   [Guevara, Bautista, Kavanagh, Vines; O’Connell,  Monteiro, O’Connell, Veiga,Sergola].  

Interestingly, the same derivation can be done in QED, where it is directly related to electromagnetic 

radiation. Indeed, for algebraically special spacetimes (D,N,O) both observables are related via the 

so-called classical double copy [White, Monteiro. O’connell;Luna, Ricardo Monteiro, Isobel Nicholson, Donal 

O'Connell, Guevara, Bautista, ...]
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emission in QFT   [Guevara, Bautista, Kavanagh, Vines; O’Connell,  Monteiro, O’Connell, Veiga,Sergola].  

Interestingly, the same derivation can be done in QED, where it is directly related to electromagnetic 

radiation. Indeed, for algebraically special spacetimes (D,N,O) both observables are related via the 

so-called classical double copy [White, Monteiro. O’connell;Luna, Ricardo Monteiro, Isobel Nicholson, Donal 

O'Connell, Guevara, Bautista, ...]

Now, the classical limit formally requires to incorporate an infinite number of gravitons in a coherent 

state in order to produce a macroscopic observable [Sahoo, Sen, Laddha; Strominger et al; O’Connell,  Monteiro, 

O’Connell, Veiga,Sergola]. We will explain the mechanism in a second. But let us just mention that in 

practice, coherent means that we can consider only a single graviton as long as we define its classical 

limit with some care.



where depends on details of acceleration and finite size effects.

Let us see some examples. The simplest case comes from linear gravity: Massive bodies  

accelerating in flat space are equivalent to the following matter source [Braginski, Thorne ]



where depends on details of acceleration and finite size effects.

For an isolated particle,       and
The (unique) 3pt  amplitude for 

a  graviton-scalar  coupling!

Let us see some examples. The simplest case comes from linear gravity: Massive bodies  

accelerating in flat space are equivalent to the following matter source [Braginski, Thorne ]



For more particles, the classical current takes precisely the form of the well-known Weinberg soft-  

factor, e.g.

This poses a small but interesting puzzle. In QFT we know that in the soft limit

What happens to the hard amplitude when we compute the classical current ?



A way to explain this is that the QFT amplitude and the classical current are solving 

different scattering  problems.

In QFT we compute a transition probability for certain states which momenta are given 

at both past and  future infinity.



A way to explain this is that the QFT amplitude and the classical current are solving 

different scattering  problems.

In QFT we compute a transition probability for certain states which momenta are given 

at both past and  future infinity.

In the classical scattering problem we fix instead the initial velocities and positions 

of the particles, i.e.  in the far past. This is an initial value problem from which the final 

velocities are determined by  integrating the equations of motion.



Luckily we can translate one amplitude into the other. For this, consider wavefunctions  associated 

to the asymptotic trajectories (we can ignore Coulomb “drag” at this order)

where projects the amplitude into its classical momenta. 

We thus obtain the following relation valid in linearized gravity:
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The previous formulae for the 5pt and 4pt amplitudes are the simplest (i.e. linear in G) 
instances of the Kosower-Maybe-O’Connell (KMO) formulae linking QFT amplitudes to 
classical observables of the scattering problem.

Let us provide a complementary perspective on such formulae, suitable for higher orders 
in G. Moreover, this will help us translate between the (classical) scattering problem and 
the (classical) bounded orbit problem.



We have not yet given a satisfactory explanation on how microscopic effects (scattering of a 
single quanta) lead to macroscopic observables in GR.

To the best of my knowledge the simplest way to understand this is through the eikonal 
approximation in QFT amplitudes [‘t Hooft 87; Amati, Ciafaloni, Veneziano 88-92; Kabat-Ortiz ‘93; 
Verlinde ‘92...]

Consider the 4-pt S-matrix of two massive particles interacting through gravity. We have 
seen that the classical limit corresponds to low momentum-transfer, i.e. forward scattering. 
In this regime the amplitude is dominated by the following ladder diagrams:

Amplitudes as Gravitational Observables (II)
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The massive propagators can be put on-shell as a consequence of the forward limit. The ladder 
does not quite factorize since there are loop integrations running in the rings. The integrand is 
indeed a convolution:

If we define the Fourier transform

the full ladder indeed factors and we obtain the eikonal exponentiation:
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Thus the contribution arising from infinitely many microscopic graviton exchanges indeed 
generates a macroscopic effect, the eikonal phase. This can be used to construct observables as we 
will explain in a moment. For instance, note that
 

is precisely the KMO formula.

The exponential structure of the S-Matrix reflects that the gravitons are in coherent superposition. 
In particular, this picture shows that classical information can be contained in loop diagrams!
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We have only considered factorization into tree-amplitudes, this is the equivalent of a 
computation in linearized gravity where we consider a geodesic in a linearized 
background (no-backreaction).  The massless case, where the background is described by 
a shockwave metric, has been considered in many contexts since the 80’s. The eikonal 
phase in the probe limit can also be computed via similar methods in AdS backgrounds 
and related to correlation functions of the dual CFT [Camanho, Edelstein, Maldacena, Zhiboedov; 
Afkhami-Jeddi,  Kundu, Tajdinim]

However, in the recent years we have understood how the eikonal exponentiation indeed 
holds at higher-orders in G, including the full gravitational backreaction! This is, as long 
as we consider the classical limit via low momentum transfer [Amati,Ciafaloni, 
Veneziano;Saotome, Akhouri; Guevara, Ochirov, Vines;  Bjerrum-Bohr, Damgaard, Festuccia, Planté, 
Vanhove,...]
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We can interpret the eikonal integral as a path integral with initial and final momenta fixed. The quantum 
trajectories are integrated as functions of the impact parameter, i.e. the radial distance. The classical trajectory 
is easily obtained from a saddle point, i.e. WKB approximation.

This perspective reveals that the eikonal phase is precisely the radial piece of single-particle action(*). The 
action describes the relative motion of one of the bodies, scattering off an effective source (in the sense 
that it includes gravitational backreaction) [Damour,Schaeffer 02; Porto,Kallin 19].

Observables from the eikonal phase



The radial action allows for a direct passage between observables for hyperbolic (unbounded) or elliptic 
(bounded) motions.

Nicely, we can perform the analytic continuation in the scattering momenta in 
order to obtain the bounded case and relate the observables. This leads to states with                       ; in 
fact the eikonal S-Matrix has poles for such negative energy values corresponding to the bounded 
spectrum [Kabat,Ortiz 92].

p→ ip
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Using either the eikonal approach or a complementary EFT matching approach [Rothstein, 
Cheung, Solon ‘18] the classical part of the amplitude has been computed to an 
unprecedented precision by several groups [Bern, Parra-Martinez, Hermann, Roiban, Ruf, 
Shen;Bjerrum-Bohr, Damgaard,  Planté, Vanhove ;Dlapa, Kalin, Liu, Porto]. This has led to 
results up to 3-loops, also known as 4PM or simply G^4.

These results are consistent with state-of-the-art Post-Newtonian (PN) computations. Such 
computations considered low orbital velocities  adequate for bounded orbits. 
From the point of view of scattering amplitudes it is natural to obtain the exact velocity 
dependence: Indeed this has been implemented at the multiloop level via a system of simple 
differential equations in the velocities (IBP relations) which use PN data as initial conditions 
[Parra-Martinez, Ruf, Zeng].

Radiation effects to the observables have also been incorporated. They can be linked to the 
imaginary part of the scattering phase, which leads to dissipation. This is controlled by 
on-shell internal gravitons:

v2~ GMG " '
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Beyond the eikonal: A Wave-Particle duality

A seemingly unrelated problem in BH dynamics is the perturbation of a BH spacetime by a 
non-spherical wave. This is an important open problem: It arises if we ask about the stability of 
Schwarzschild or Kerr spacetimes under certain initial perturbations, and it is closely related to 
the study of their quasinormal modes [Regge,Wheeler 57; Christodoulou, Klainerman ‘90; 
Dafermos, Holzegel, Rodnianski, Taylor ‘21;...]. 

 

Again, the absence of symmetry makes the problem extremely hard to track, so we resort to 
perturbation theory. The first step was made by Regge and Wheeler in the 50’s, who studied 
linearized perturbations of helicity h=0,½,1,2 in the full (non-linear) Schwarzschild background.

[ Bautista ,
Guevara

, Kavanagh ,
Vines TBP ;

Cristofoli
,
Gonzo

,
Kosower

,
O'Connell TBP ]



Recall that the gauge invariant information of perturbations can be encoded in the 
Newman-Penrose amplitudes. Using this language we can decompose NP scalars in partial 
waves of helicity h:

(h=2 for gravitational waves). The RW equation then determines the radial component of the 
NP scalar.

This provides a direct link to QFT: The RW equation is nothing but a time independent Schrodinger 
equation, hence scattering can be mapped directly to a gravitational QFT amplitude. In other words, we 
can scatter the wave with a matter particle that plays the role of the BH effective potential.



We have argued that scattering amplitudes for graviton emission are directly related to classical sources 
emitting GWs.

The correspondence holds for all helicities with the adequately defined NP scalars.

Crucially, none of the above amplitudes requires small momentum transfer to define its classical limit. We 
only require the wave frequency to be small  (and ignore corrections in    )  so that the BH appears 
particle-like. This is the Born approximation.
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If we further consider the eikonal limit of these amplitudes, ,  we can interpret the 
wave as a classical particle propagating in a Schwarzschild background.

First, universality occurs in the sense that the amplitudes for helicities h=0,½,1,2 agree up to 
an arbitrary phase at leading order in G.

This is nothing but the equivalence principle. Indeed in the eikonal limit we have

Note: In the massless/boosted limit of the source the background is not Schwarzschild but 
the Aichelburg-Sexl shockwave. The wave-particle duality was considered long ago by `t 
Hooft.
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Final thoughts: 

Classical Black Holes = (spinning) elementary particles?



Let us come back to the 3-pt amplitude of a graviton coupled to a scalar source:

 Due to the delta function in front, it does not have support on (3,1) signature!

This reflects that a single isolated body yields a stationary metric and cannot emit 

radiation. Indeed the Schwarzschild metric has only Coulomb-like modes which are 

off-shell (they don’t reach null infinity)

Classical Black Holes = elementary particles?



Duff [73] studied this off-shell modes in momentum space and showed that the Schwarzschild 

metric, in harmonic gauge, can be obtained perturbatively by iterating a classical source

In more modern terms, this is indeed a multiloop computation (with cut propagators), and the classical 
source can be readily written in terms of the worldline formalism

if



But such metric is neither an observable nor a scattering amplitude, indeed it was obtained in 

the harmonic gauge. So how can we recover a BH spacetime solely by scattering massive 

particles?

For starters,  we have seen that 2-body dynamics and BH perturbations are encoded in 4-pt 

scattering amplitudes, so the background spacetime must be somehow encoded in the 

corresponding observables. For instance, one can reconstruct the Schwarzschild spacetime by 

studying the effective potential of a test particle, which in turn is controlled by the scattering 

angle.

This hints that the on-shell internal gravitons, which indeed contain the classical information of 

the 4pt amplitudes, are more than enough to recover the background spacetime.

  



Even though the previous 3pt amplitude vanishes, it still has support on complexified momenta 

and can be used as a building block to construct higher-point observables associated to BH 

spacetimes. This is nothing but the standard lore of the on-shell program.

An alternative perspective: We can analytically continue to (2,2) signature where the 3-pt amplitude  

does not vanish, and indeed matches the (2,2) background metric! This shows that the the amplitude 

contains the necessary information (after analytic continuation the Coulomb modes indeed reach null 

infinity) [Guevara, Maybee, Ochirov, O'connell, Vines; Ricardo Monteiro, O'Connell,  Peinador Veiga,  

Sergola]



Moreover, very recently it has been noted that the 3-pt amplitude for massive particles of 

infinite quantum spin number can be used to construct observables associated to the Kerr 

black hole [Guevara, Bautista, Ochirov, Vines; Huang, Kim, Chung, Arkani-Hamed;....]

The corresponding 4-pt amplitude can be easily constructed at low orders in spin (aw) via 

dimensional reduction [Guevara, Bautista], but in order to reconstruct the full spin 

dependence at 4-pts we need to consider higher-spin amplitudes and match them to the 

corresponding NP scalars in Kerr backgrounds [Guevara, Bautista, Kavanagh, Vines]. This 

shows a fascinating link between higher-spin particles and Kerr perturbations!

Related: QNM? Kerr/CFT?
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Thanks!



● Most of the construction can be extended to include spin.

● Supergravity results, graviton dominance?

● Non-minimal couplings, tidal effects,....

● Methods seem to escalate well---> current 3-loop results

● Is there hope for non-perturbative understanding?

Other discussion points:


