Mean String Field Theory: Landau-Ginzburg theory for 1-form symmetries

John McGreevy (UCSD)

based on work with **Nabil Iqbal** (Durham) 2106.12610 and work in progress.

Motivation: Enlarged Landau Paradigm.

Landau paradigm: (basis of most condensed matter understanding)

- 1. Phases of matter are classified by how they represent their symmetries.
- 2. At a critical point, critical dofs are fluctuations of order parameter.

Gapless excitations or degeneracy (in a phase) are Goldstone modes for spontaneously broken symmetries.

Landau-Ginzburg theory is an implementation of this point of view for finding representative states, for understanding gross phase structure; it quantitatively describes phase transitions in large enough dimensions.

Some apparent exceptions:

- topological order [Wegner, Wen]
- e.g. deconfined phase of discrete gauge theory,

fractional quantum Hall states.

• other deconfined states of gauge theory (e.g. Coulomb phase of E&M).

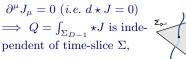
As we enlarge our understanding of what constitutes a symmetry, we can also enlarge the Landau paradigm.

Goal: Our goal here will be to understand how to generalize the idea of Landau-Ginzburg theory.

Higher-form symmetries.

[Gaiotto-Kapustin-Seiberg-Willett, Sharpe, Hofman-Iqbal, Lake...]

0-form symmetry:



i.e. is topological.

Charged particle worldlines can't end

(except on charged operators).

Discrete (\mathbb{Z}_p) version: particles can

disappear in groups of p.

Charged objects are local operators

 $\mathcal{O}(x) \to e^{\mathbf{i}\alpha} \mathcal{O}(x), \quad d\alpha = 0.$

 $(D \equiv \text{ number of spacetime dimensions.})$ 1-form symmetry: $J_{\mu\nu} = -J_{\nu\mu} \text{ with } \partial^{\mu}J_{\mu\nu} = 0$ $(i.e. \ d \star J = 0)$ $\implies Q_{\Sigma} = \int_{\Sigma_{D-2}} \star J \text{ depends}$ only on the topological class of Σ .

Charged string worldsheets can't end (except on charged operators). Discrete (\mathbb{Z}_p) version: strings can disappear or end in groups of p.

Charged objects are loop operators: $W[C] \rightarrow e^{i \oint_C \Gamma} W[C], \quad d\Gamma = 0.$

Physics examples of one-form symmetries:

• Maxwell theory with electric charges: $J^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma} = (d\tilde{A})^{\mu\nu}$ is conserved: $\nabla_{\mu} J^{\mu\nu} = 0$. (Charged operator is the 't Hooft line, $W^E = e^{i \oint_C \tilde{A}}$.)

▶ Pure $\mathsf{SU}(N)$ gauge theory or \mathbb{Z}_N gauge theory or $\mathsf{U}(1)$ gauge theory with charge-N matter has a \mathbb{Z}_N 1-form symmetry ('center symmetry'). (Charged line operator is the Wilson line in the minimal irrep, $W[C] = \operatorname{tr} Pe^{i\oint_C A}$.)

▶ The 3d Ising model

has a \mathbb{Z}_2 1-form symmetry reflecting the integrity of domain walls. (Charged line operator is the disorder operator.)

Higher-form symmetries can be broken spontaneously.

[Kovner-Rosenstein, Nussinov-Ortiz, Gaiotto-Kapustin-Seiberg-Willett, Hofman-Iqbal, Lake]

0-form symmetry:

Unbroken phase: correlations of charged operators are short-ranged, decay when the charged object ($S^0 =$ two points) grows.

 $\langle \mathcal{O}(x)^{\dagger} \mathcal{O}(0) \rangle \sim e^{-m|x|}$ $(|x| = \operatorname{Area}(S^{0}(x)).)$

Broken phase for 0-form sym: $\langle \mathcal{O}(x)^{\dagger} \mathcal{O}(0) \rangle = \langle \mathcal{O}^{\dagger} \rangle \langle \mathcal{O} \rangle + \dots$ independent of size of S^{0} .

1-form symmetry:

Unbroken phase: correlations of charged operators are short-ranged, decay when the charged object grows. $\langle W(C) \rangle \sim e^{-T_{p+1}\operatorname{Area}(C)}$ For E&M, area law for $\langle W^E(C) \rangle$ is the superconducting phase.

Broken phase for 1-form sym: $\langle W(C) \rangle = e^{-T_p \operatorname{Perimeter}(C)} + \dots$ (set to 1 by counterterms local to C: large loop has a vev) Higher-form symmetries, a fruitful idea:

 Topological order as SSB [Nussinov-Ortiz 06, Gaiotto-Kapustin-Seiberg-Willett 14]

 Photon as Goldstone boson [Kovner-Rosenstein 92, Gaiotto et al, Hofman-Iqbal, Lake 18]

► A new organizing principle for magnetohydrodynamics [Grozdanov-Hofman-Iqbal 16]

 New anomaly constraints on IR behavior of QFT [Gaiotto-Kapustin-Komargodski-Seiberg 17, many others]

Robustness of higher-form symmetries.

We are used to the idea that consequences of emergent (aka accidental) symmetries are only approximate:

Explicitly breaking a 0-form symmetry gives a mass to the Goldstone boson.

Q: The existence of magnetic monopoles with $m = M_{\text{monopole}}$ explicitly breaks the 1-form symmetry of electrodynamics:

$$\partial^{\mu}J^{E}_{\mu\nu} = j^{\rm monopole}_{\nu}$$

If the photon is a Goldstone for this symmetry, does this mean the photon gets a mass? No!

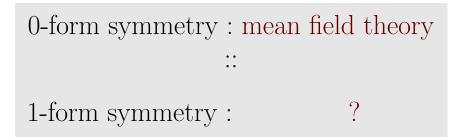
Cheap explanation #1: By dimensional analysis (take $m_e \to \infty$). $m_{\gamma} \to 0$ when $M_{\text{monopole}} \to \infty$. Cheap explanation #2: By dimensional reduction. $m_{\gamma} \stackrel{[\text{Polyakov}]}{\sim} e^{-M_{\text{monopole}}R} \stackrel{R \to \infty}{\to} 0.$

Cheap explanation #3: The operators that are charged under a 1-form symmetry are loop operators – they are not local. We can't add non-local operators to the action at all.

Mean String Field Theory

Method of the missing box.

Landau-Ginzburg mean field theory is our zeroth order tool for understanding symmetry-breaking phases and their neighbors.



Landau-Ginzburg-Wilson reminder.

Order parameter for U(1) 0-form symmetry-breaking, $\phi(x) \mapsto e^{i\alpha} \phi(x)$. ϕ is a coarse-grained object, this is an effective long-wavelength description. All local, symmetric terms, organized by derivative expansion (what else could it be):

$$S_{\text{Landau-Ginzburg-Wilson}}[\phi] = \int d^D x \left(r |\phi|^2 + u |\phi|^4 + \dots + |\partial \phi|^2 + \dots \right) \;.$$

One way to make contact with a microscopic Hamiltonian H is by the variational principle:

Product-state ansatz: $|\phi\rangle \equiv \bigotimes_x |\phi(x)\rangle$.

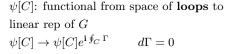
 $H_{LGW}[\phi] = \langle \phi | H | \phi \rangle$ determines specific coefficients.

Working by analogy.

Ingredients:

 $\phi(x)$: function from space of **points** to linear rep of *G*

 $\phi(x) \to \phi(x)e^{\mathbf{i}\alpha} \qquad d\alpha = 0$



 $\int d^D x$

Coupling to be field: $\mathcal{A} \to \mathcal{A} + d\alpha$ $\frac{\partial}{\partial x^{\mu}} \phi(x) \rightsquigarrow \left(\frac{\partial}{\partial x^{\mu}} - \mathbf{i} \mathcal{A}_{\mu}(x)\right) \phi(x)$ $\overbrace{\delta C^{\mu\nu}}^{\underline{\delta}}: \text{ area derivative [Migdal, Polyakov]}$

 $\int [dC] \equiv \int [dX] e^{-mL[C]}$

Coupling to background field: $\mathcal{B} \to \mathcal{B} + d\Gamma$ $\frac{\delta}{\delta C^{\mu\nu}(s)} \psi[C] \rightsquigarrow \left(\frac{\delta}{\delta C^{\mu\nu}(s)} - \mathbf{i}\mathcal{B}_{\mu\nu}(x(s))\right) \psi[C]$ [Soo-Jong Rev 89]

Mean String Field Theory.

All terms consistent with basic principles in (area) derivative expansion:

$$S_{\rm LGW}[\psi] = \int [dC] \left(V \left(|\psi[C]|^2 \right) + \frac{1}{2L[C]} \oint ds \frac{\delta \psi^{\star}[C]}{\delta C_{\mu\nu}(s)} \frac{\delta \psi[C]}{\delta C^{\mu\nu}(s)} + \cdots \right) + S_r[\psi],$$

 $v(x)\equiv rx+ux^2+\cdots, \quad rac{\delta}{\delta C^{\mu
u}}$: area derivative [Migdal, Polyakov]

Topology-changing recombination terms:

$$S_r[\psi] = \int [dC_{1,2,3}] \delta[C_1 - (C_2 + C_3)] \left(\lambda \psi[C_1] \psi^*[C_2] \psi^*[C_3] + h.c.\right)$$

 $+ \cdots \,$ also respect 1-form symmetry.

The action $S_{\text{LGW}}[\psi]$ is Wilson-natural^{*} under the following assumptions:

- Invariance under the 1-form symmetry
- ▶ Locality: a single integral over the center-of-mass position.
- Ordinary rotation and translation invariance
- ▶ A certain translation invariance in loop space

Mean String Field Theory.

$$S_{\rm LGW}[\psi] = \int [dC] \left(V \left(|\psi[C]|^2 \right) + \frac{1}{2L[C]} \oint ds \frac{\delta \psi^*[C]}{\delta C_{\mu\nu}(s)} \frac{\delta \psi[C]}{\delta C^{\mu\nu}(s)} + \cdots \right) + S_r[\psi]$$

- Important disclaimer: Not at all UV complete, no gravity.
 We expect no connection to 'real' string field theory and are trying to do something much less difficult involving only effective strings.
- ▶ A gauged version of this model (without S_r) was studied [Soo-Jong Rey, 1989] as a description of 2-form Higgs mechanism, and [Franz 07, Beekman-Sadri-Zaanen 11] as a dual description of a 3 + 1d superfluid.
- Still-difficult but well-posed Q: what does this model describe?
 Plausible goal: develop a crude picture of the phase diagram (and transitions) for systems with 1-form symmetries.

Classical mechanics of Mean String Field Theory.

Equations of motion: $0 = \frac{\delta S[\psi]}{\delta \psi^*[C]}$

$$0 = -\frac{1}{2}e^{mL[C]} \oint ds \frac{\delta}{\delta C_{\mu\nu}(s)} \left(ds \frac{e^{-mL[C]}}{L[C]} \frac{\delta \psi[C]}{\delta C^{\mu\nu}(s)} \right) + \psi[C]V'(|\psi[C]|^2) + \frac{\delta S_r}{\delta \psi^*[C]}$$

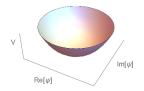
Requires a boundary condition at small loops. This BC says: a small loop can shrink to nothing.

Setting ψ [small, contractible loop] = g^{-2} , some constant

- ▶ is consistent with the symmetries, since for a small, contractible loop, $C = \partial R, \, \psi[C] \rightarrow e^{i \oint_C \Gamma} \psi[C] = e^{i \int_R d\Gamma} \psi[C] = \psi[C]$ is neutral, and
- ▶ will match nicely to gauge theory in the broken phase.

Unbroken phase.

Let's ignore S_r for a moment, and take r > 0:



$$S_{\rm LGW}[\psi] = \int [dC] \left(r\psi[C]\psi^*[C] + \frac{1}{2L[C]} \oint ds \frac{\delta\psi^{\dagger}[C]}{\delta C_{\mu\nu}(s)} \frac{\delta\psi[C]}{\delta C^{\mu\nu}(s)} + \cdots \right),$$

$$r > 0 \implies \psi[C] \sim 0. \ (\psi = 0 \text{ is not consistent with B.C.})$$

Ansatz: $\psi[C] = e^{-s(A[C])}, \quad A[C] = \min_{\Sigma, \partial \Sigma = C} \operatorname{Area}(\Sigma)$

For large r, A, solution is self-consistently: $(s'(A))^2 = r + \mathcal{O}\left(A^{-1/2}\right)$

$$\implies \psi[C] \simeq e^{-\sqrt{r}A[C]} \,.$$

Area law. Confinement. String tension = \sqrt{r} .

Broken phase.

Now consider r<0: $\psi[C]\sim v~(v=\sqrt{\frac{|r|}{2u}})$ "string condensed phase" $_{\rm [Levin-Wen]}$

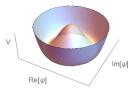
Fluctuations about groundstate:

$$\psi[C] = v \exp\left(\oint_C ds \left(\mathbf{i}t(x(s)) + \mathbf{i}a_\mu(x(s))\dot{x}^\mu(s) + \mathbf{i}h_{\mu\nu}(x(s))\dot{x}^\mu\dot{x}^\nu + \cdots\right)\right) \quad .$$

Plug back into action (worldline techniques, e.g. [Strassler's thesis]):

$$S[\psi] = \frac{v^2}{2} \int d^D x f_{\mu\nu} f^{\mu\nu} + \text{massive modes}, \quad (f \equiv da)$$

- ▶ Photon = Goldstone boson (slowly-varying 1-form symmetry transf).
- Gauge coupling is $g^2 = \frac{1}{2v^2}$, determined by stiffness.
- ▶ All other unprotected dofs massive.
- ▶ Perimeter-law factors $e^{-\oint_C \mathcal{L}} = e^{-mL[C]+\cdots}$ ambiguous by field redefinition of $\psi[C]$.



Topological defects in the broken phase.

Another purpose of ordinary LG theory is to provide an understanding of topological defects of the broken phase [e.g. Mermin 1979].

Take $X \subset$ spacetime with $\psi \neq 0$ defines a map $LX \to U(1)$, where LX is the free loop space, maps $S^1 \to X$.

Defects linked with X are then labelled by homotopy classes of such maps [LX, U(1)].

If $\pi_1(X) = 0$, then

 $[LX, S^1] = \pi_2(X).$

For example, take $X = S^{q-1}$ surrounding a codim q locus. This predicts that the magnetic monopole is the *only* topological defect for G = U(1).

Discrete 1-form symmetries.

To break the U(1) 1-form symmetry down to a \mathbb{Z}_p subgroup, add

$$S_p = h \int [dC] \psi^p[C] + h.c.$$

In the broken phase, this is $S_p = 2hv^p \sum_C \cos\left(p \oint_C a\right)$. For $h \gg 1$, minimizing S_p requires $\oint_C a = \frac{2\pi k}{p}, k = 0, \dots p - 1$ for all loops C, including nearby loops $\implies da = 0$. Introducing a D - 2-form Lagrange multiplier b to set pda = 0 gives

$$\int [d\psi] e^{-S_{\mathrm{LGW}}[\psi] - S_p[\psi]} U^k_{\mathcal{M}_{D-2}} \sim \int [dadb] e^{\mathbf{i} \frac{p}{2\pi} \int b \wedge da} e^{\mathbf{i} k \int_{\mathcal{M}_{D-2}} b}$$

where $U_{\mathcal{M}_{D-2}}^k$ is the 1-form symmetry operator.

This is an EFT for \mathbb{Z}_p gauge theory. \checkmark

Regularization on the lattice.

A simple example of a system with 1-form symmetry: \mathbb{Z}_p gauge theory aka (perturbed) toric code. Cell complex, $\mathcal{H} = \bigotimes_{\text{links, }} \ell \mathcal{H}_p$.

$$H_{\rm TC} = -\infty \sum_{\text{sites, } s} \sum_{\substack{q \\ p \\ q \ p \ p \ q}} -\Gamma \sum_{\text{plaquettes, } p} x_{p} + g \sum_{\substack{q \\ p \ q \ q}} Z_{\ell}.$$

$$g = 0: \ |\text{gs}\rangle = \sum_{\text{collections of closed loops, C}} |C\rangle \qquad (\text{where } |\underline{f}\rangle \equiv |Z_{\ell} = -1\rangle).$$

$$g \sim \text{electric string tension.} \xrightarrow{\text{SBJTO}} \frac{|C|}{|c|^{-1}|c|^{-1}} \xrightarrow{\text{confinement}} Y_{\Gamma}$$

$$(\text{Product-state' ansatz:} \quad |\psi\rangle =: e^{\sum_{c, \text{ connected } \psi[c]W[c]} : |0\rangle$$

where W[c]|0
angle=|c
angle creates the loop c. [Related ansatze: Levin-Wen 04, Vidal et al]

$$E[\psi] \equiv \langle \Psi | H_{\rm TC} | \Psi \rangle$$

= $\sum_{c} \left(-\sum_{\partial p \cap c \neq 0} \psi^{\star}[c] \psi[c + \partial p] + gL[c] \psi^{\star}[c] \psi[c] \right) - \sum_{\substack{p \ \text{small-loop BC}}} \psi[\partial p] + \underbrace{H_{r}}_{\text{recombination}}$

 $0=\frac{\delta E}{\delta\psi^{\star}}$ gives a lattice version of the MSFT EoM.

Thoughts about phase transitions

Phase transitions.

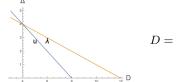
If we were to ignore S_r

(for example if there were an additional $\psi \to -\psi$ symmetry):

- Continuous mean field transition at r = r_c = 0, ψ[C] ~ e^{-√r-r_cA}. Numerical estimate of this exponent: tension ~ (r - r_c)^x in d = 3 Z₂ case is x ≃ 1.26 ≠ 0.5 [Hasenbusch 93]
- Dimensional analysis says the upper critical dimension is 8!
 [Parisi 79] using estimate of fractal dimension of random surfaces = 4.

But: $S_r \sim \psi^3$. The fact that the U(1) 1-form symmetry admits a cubic term strongly suggests that the generic transition is first order. This provides an appealing explanation for the anecdotal evidence from many numerical simulations. *e.g.* [Creutz-Jacobs-Rebbi, ..., Kawai-Nio-Okamoto,

Allais, Florio-Lopes-Matos-Penedoñes]



D = 4 is special.

Phase transitions.

Two notions of lower critical dimension: $(D_U^1 = D_U^2 = 2 \text{ for 0-form symms.})$ • where Hohenberg-Mermin-Wagner-Coleman forbids symmetry breaking $(D_U^1 = 3 \text{ [Gaiotto et al, Lake]})$

• where linearly-transforming fields are dimensionless $(D_U^2 = 4)$.

In D = 4 there can be a KT-like transition.

The dimension of h in $S_p = -h \int [dC] \psi^p[C] + h.c.$ is $\Delta_p(g) = \frac{g^2 p^2}{32\pi^2}$ [Kapustin 05]. For large-enough $p, \Delta_p(g)$ passes through 4 at some $g_c < \sqrt{4\pi}$.

non-conf. p_c magnetic electric conf. conf. 1st order

Seen in $3 + 1d \mathbb{Z}_p$ lattice gauge theory simulations for large-enough p. [Elitzur et al, Horn et al, Windey et al, Svetitsky-Yaffe, Creutz-Jacobs-Rebbi]

Final thoughts.

- There is much more to understand about this theory.
 It is not quite under control yet, but likely can be understood.
- Can we find new RG fixed points this way?
- ▶ By adding topological and WZW terms, we can describe 1-form SPTs, and realize more general gauge theories as the broken phase.
- What is a gauge theory? Contrast with the work of Polyakov, Migdal, Makeenko and others reformulating a particular gauge theory as a field theory in loop space: Here, by writing a field theory in loop space, we arrive at some universal properties of gauge theory.

Final thought.

Q: Does the enlarged Landau paradigm (including all generalizations of symmetries, and their anomalies – see Shu-Heng Shao's talk on Thursday) incorporate all phases of matter (and transitions between them) as consequences of symmetry?

> Landau was even more right than we thought. This seems to be a fruitful principle.

The end.

Thanks for listening.

Thanks to the organizers of the Strings meeting.