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Motivation

String theory is a powerful extension of quantum field theory, but extracting

low-energy physics from string geometry is mathematically challenging...

Higher dimensional theory‘ — ‘ String Comp. ‘ — ‘ 4d physics

heories

@ Need a good toolkit in any corner of
string theory to extract the full low

energy physics: (e.g. the mass of the

electron?)

@ Rules for “top down” model ‘What possible EFTs? ‘
building? i
Patterns/Constraints/Predictions? ‘ Which geometries? ‘

Today: Progress in N’ = 1, 4D Heterotic String Compactifications...
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Heterotic Trilinear Yukawa Couplings

For a heterotic compactification, need: a manifold, X, and bundle, 7 : V — X.

@ Perturbative, tri-linear couplings defined around a background:
A=A+ ' vis T+ ...

where v; is the bundle valued harmonic 1-form on X which counts the

multiplicity of the 4D fields ¢/.
o For matter-fields, ¢/, then the superpotential tri-linear coupling
Ak d!' ¢l oK is given by the integral
)\IJKN/ ViAVIA vk AQ
X
where Q is the holomorphic (3,0) form on X.
o Interested in particular textures/hierarchies. E.g. Standard model (Heavy

top quark), SUSY “mu problem” (want to forbid a mass term allowed by
gauge symmetry, i.e. uHyH,), Forbid rapid proton decay operators, etc...
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Topological Vanishings

@ In general: to understand heterotic effective theories, we need
a) Good tools to effectively compute couplings/masses
b) Ways to study/predict general structure (which could lead to
hierarchies like those above).

° Heterotic theories can exhibit “Topological Vanishings”
(i.e. vanishing couplings that must be zero due to the structure of the
geometric background (X, V), rather than gauge invariance)

o Goals:

o Understand what geometric effects can lead to topological vanishings
o How can these geometric effects differ/be related?

o How generic are such vanishings?

o Hidden symmetries?
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Algebraic vs. Differential Geometry Approaches

e How to actually compute?

o First E.g.s, V = TX here some Yukawa couplings are simply triple
intersection numbers (d,ss = D, N Ds N D;) and can use mirror symmetry
(Strominger, Candelas,. . .)

o Algebro-geometric approach: Can show that integral form of Ak is 1-1
with a triple product in cohomology (i.e. a Cup/Yoneda product). Eg.

for 27° coupling in an Eg-theory:
HY(X, V) x HY(X, V) x H'(X, V) = H}X,A’V) ~C
e Given algebraic representation of H(X, V), can turn this into a problem

in polynomial multiplication (i.e. Groebner basis calculation). (Distler, et

al),(Ovrut, Donagi, Pantev, et al), (LA, Gray, Lukas-et al...)
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Algebraic vs. Differential Geometry Approaches

o Differential Geometry Approach (Blesneag, et al):
e E.g. Suppose X C A=P" x ... x P"™ is defined via p(x) = 0 and the

bundles/forms descend from objects on .A:
1
)\(Vl, Vo, V3) ~ —?/ AW ABA (52(p)dp ANdp
Ja
with §2(p) is a delta-function current satisfying

1-1

§%(p)dp = =0(=
(p)dp = _-0()

@ Defining Qndp= 1 one has an explicit form

H/\[5\71/\\72/\\73—\71/\5\72/\\734-\71/\\72/\5\73]

>\(V13V23V3):_% p
A

note: ¥y is not necessarily closed. Can easily see that some couplings must

vanish.
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A homological algebra framework

@ We proved a number of theorems, only give a flavor here:

@ Theorem : Given any resolution
o= o= F—=Fo—Vx—=0

can define a notion of ‘type’ for elements of H'(Vx). Namely, a
cohomology element has type T = i if it descends from H'(F;_1). Then if
H3(A3Fo) = 0, all trilinear couplings between T = 1 fields will vanish. If,
in addition, H*(Fy ® N2Fy) = 0, then all Yukawa couplings between one
type T = 2 and two type T = 1 fields will also vanish.

@ Special case: (Generalization of work of Blesneag, et al): Koszul

resolution for X C A (a complete intersection in co-dimension k):

0 ANV QY o ANV 5 ...V 5 V=0
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Geometric origins for topological vanishings

@ There are three main classes of geometric structures in the literature that
lead to vanishing criteria (not necessarily exhaustive)
@ Broadly, constraints arise from either — the manifold — and/or — the
bundle. These include constraints on couplings due to
@ The description of the CY manifold inside an ambient space (i.e. as a toric
complete intersection) (Candelas, Lukas, et al)
@ The description of the CY manifold as a fibration (Braun, Pantev, Ovrut,
Donagi, et al),(Bouchard, Cvetic, Donagi), etc
© The stability of the bundle and Kéhler cone substructure (i.e. “stability
walls”) (Watari et al), (LA, Gray, Ovrut)
e Homological algebra tools can also describe fibrations/stability walls.
e Simple Question: Given diverse geometric origins for topological

vanishings of Yukawa couplings, must different descriptions agree? = No.
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Genericity of vanishing criteria

-960 480 0 480 960
T T T T T

o CY3 Fibrations are actively studied
(LA,Gao,Gray,Lee), (Taylor-Huang)

500 f-+ = 4 500

@ Observation 1: Almost all known CY
3-folds are fibered.

100

@ Observation 2: generic manifolds do

not admit just one elliptic fibration,

960
so0r,

they admit many (~ 10s or 100s).

a0

@ Each of these distinct fibrations can
induce topological vanishings! Overall

Conclusion: Heterotic couplings

generically highly constrained

0 100 200 300 500"

(from Taylor 1205.0952) (beyond any one baSIS).
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Determining the 4D theory in string compactification

@ Physical quantities in low energy string theory depend on the metric and
gauge connections in the extra dimensions.
o For example:
e Yukawa couplings in Heterotic string theory descend from a term in the
10-dimensional action of the form ~ [ d**/=gyAiy. Normalization of
fields and coefficients of the superpotential depend on g.
o Matter field Kahler potential unknown except for special cases.
e Modes of V-twisted Dirac Operator: YxW = 0 depend on the metric and a
connection on a vector bundle, V on X (gauge field vevs on X).

o Problems in moduli stabilization

o | How to determine the metric and the connection? ‘

@ Only current general approach via = numeric approximation.
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The Donaldson Algorithm

o Idea: Use projective embeddings to generate simple metrics that can be

parametrically tuned to the Ricci-flat solution.

o Kodaira embedding: Given an ample line bundle £ on X then an
embedding

i X = PR (x, .., ) = [so(x):...: s,,k_l(x)]

exists for all LK = L& with k > ko for some kg, where s, € HO(X, LF).
o What do we know about metrics on P"? Fubini-Study:
i - 1 Foo
(ng),-f = 56,-8]KF5 where Krs = ;anh zZ;
ij
and A7 is a non-singular, hermitian matrix.

o F'S metric restricted to X is not Ricci-flat. But...
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Generalize: Ky = 2= In ng/; 0 ho‘ﬁsasﬁ =In|[s[3

o h*B is a hermitian fiber metric on £2K.

Such Kahler potentials are dense in the moduli space (Tian)

Fixed point of Donaldson’s “T-operator” <+ “balanced metric”.

Sa53
T(h)aﬁ_ VO/Cy(X fX Z ’h'*gs 5 dVole

Theorem (Donaldson)

For each k > 1, the balanced metric, h, on L®¥ exists and is unique. As k — oo,

the sequence of metrics
n—1

(k)
g = —88 In % he sasB
,B=0

on X converges to the unique Ricci-flat metric for the given Kahler class and

complex structure.
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A new approach

o Existing numeric implementations of Donaldson’s algorithm (Douglas et
al, Ovrut et al). Computationally intensive. (Accurate enough? Don’t
know...)

@ Moduli dependence difficult to obtain.

° ‘New Approach‘ = ‘Machine Learning ‘ What we did:

@ Supervised learning of moduli dependence of Calabi-Yau metrics using
the Donaldson algorithm to generate training data.

@ Direct learning of moduli dependent Calabi-Yau metrics both using the
metric ansatz and without it.

@ Direct learning of metrics associated to SU(3) structures with torsion.

o I'll give a brief flavor of these results...(see also, (Douglas et al), (Jejjala,

et al))
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Preliminaries

@ One definition of a Calabi-Yau three-fold: A complex 3-fold admitting a

nowhere vanishing real two-form, J, and a complex three-form, Q, such

that:
3i =
JAQ=0 J/\J/\J:ZQ/\Q
dJ=0 dQ1=0
@ Metric is related to the two form as ig,; = J,;

Example CY manifold: “Quintic” hypersurface: X = P*[5]

eg pA)=+H5+2+23+2 + 22122324 =0
@ The holomorphic (3,0) form can explicitly constructed for such manifolds
(Candelas, et al).

1
Q= — dz.
RN AN
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Direct Learning of the Kahler Potential

@ The balanced metric output by Donaldson’s algorithm at given finite k is
not necessarily the most accurate approximation to the Ricci-flat metric -
maybe we can do better?

o Can generate networks to find the parameters that are trained directly

using a loss such as:

4i P

Lya= |14 = —
MA ‘ + 3O Q‘
o C.f.: Headrick and Nassar (although note that we are obtaining moduli

dependent results and using ML). Network Architecture:

Layer Number of Nodes Activation Number of Parameters
input 17 -

hidden 1 100 leaky ReLU 1800

hidden 2 100 leaky ReLU 10100

hidden 3 100 leaky ReLU 10100

output d? identity 101 d?

Lara Anderson (Virginia Tech)
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@ These networks were optimized for 0 < || < 10

—— DenseModel-1 DenseModel-3 Accuracy for I
+  DenseModel-1 et x
107! | - DenseModel-2 T T
+  Donaldson k=6

- Extrapolation from y=100

(shaded region denotes extrapolation of the networks).

@ Note Donaldson algorithm with k = 12 takes order days to run even for
the single case of ¢ = 0. This network at k = 6 takes only minutes and
gives comparable accuracy for a whole range of 1.

@ We do better than Donaldson Alg. at k = 6 and that this improvement
extends up to || ~ 175, nearly a factor of 2 beyond the regime used

during training.
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Direct learning of the metric

o Instead of learning parameters in an ansatz for the Kahler potential we
can try to learn the CY metric directly.
o Why try?
o Perhaps we can improve performance by not being tied to an ansatz at
fixed k.
e We will be able to generalize this approach to more complicated
geometries.
@ One disadvantage:
e We now need loss functions to check that the metric is globally well

defined and Kahler! We use £ = M Lya + A2Lay + A3Loverlap
o Here Lya is the loss described before and we add to this

1
Ccu=*||d~’\|1

Lovertap = ZHgNN?J Ti(2) - gdn (D) - T,
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10*

107

loss

10!

Input: Re(z), Im(z;) (homogeneous coords describing pt in CY)

Re(v), Im(1). Output: d? real and imaginary parts of a metric at point.

To give a concrete example: optimized at ¥ = 10 on a data set of 10,000

points. We split the points according to train:test=90 : 10 and we train

for 20 epochs.

Accuracy reaches same level as Donaldson Alg. at k =5 (we expect more

points and better architecture will easily improve this).

Average loss per epoch

.
S40sss0ssss0s0b0s

SR IKINHK
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epoch

Average loss per epoch
SAAAAAAAAAAAAAAAAAAAAL

1 . 2%eq
'loooooooooooooo

loss

10"

0 2 4 6 8 10 12 14 16 18 20

epoch

10°

10!

Average loss per epoch

é
L7
$0000000000000080

XX KXXXXXXXXXXXXX

16 8 10 12 14 16 18 20

epoch

Left: Optimizing the NN with all three losses. Middle: Optimizing the NN without Kahler loss

(i.e. A2 =0). Right: Optimizing the NN without overlap loss (i.e. A3 = 0).
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Learning SU(3) structures from an anzatz

@ Important reason to directly learn the metric: Can be generalized to
non-Ké&hler geometry!

@ One important class of geometries for N' = 1 compactifications: SU(3)
structure manifolds

@ These are six-manifolds with a nowhere vanishing two form J and three
form Q obeying the same algebraic properties as the Calabi-Yau threefold

case:
JAQ=0 J/\J/\J:%Q/\ﬁ

But with different differential properties...

@ An SU(3) structure can be classified by its torsion classes:

d = —%Im(WlQ) +Wand+ Ws

dQ = WAJAJ+ WA+ WsAQ,
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@ Where torsion classes are given the defining forms:

1

1,
W1 = _ng_ldJ = E

FudQ, Wy = %JJdJ , Ws = —%Q+Jdﬂ+

o Given string theories place different constraints on the torsion classes for
there to be an associated solution to the theory of the type we want.

o E.g. heterotic string theory: Wj = W, =0, Wy = %W5 = do¢, Wj free.

@ Note that a CY structure is a special case: W; =0Vi=1,...5.

@ Need to start with some well-controlled /simple example.

@ Observation: Some CY manifolds admit not only Ricci-flat metrics, but
other SU(3) structures as well.

o E.g. (generalization of work by Larfors, Lukas and Ruehle)

A1 (x)
J = Z a;J,- Q= Alﬂo —+ AQQO

i=1
@ The a; are real functions and A; and A, are complex functions. CY taken

to be a complete intersection in a product of projective spaces.
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e Quintic E.g. (from Larfors, et al)

4
, Alzaf , A2 =0, (where U:Z|Za|2)
a=0

1 |Vp|?
a) = —%

w3 ot

with p the defining equation of the hypersurface.

@ This has torsion classes Wiy = Wh = W5 =0, Ws = 2W, = 2d(In(a1)) and
thus provides a solution to heterotic string theory.

@ We aimed to reproduce this known analytic solution using direct learning
of the metric.

@ Such a check is particularly important in learning such metrics as we have
no analogue of Yau’s theorem to use to argue we are converging towards

an exact/unique solution.
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@ Can use the same losses as in the Calabi-Yau case, then, with the

exception of replacing the Kahler loss by the following.
Lw, = ||dJ —dIn(a1 A J)]|,,
@ We ran this for the ¢ = 10 quintic, using multiplicative boosting from grs.

Average loss per epoch

= Losses
® Monge-Ampere
¢ +  Kihler
107 é X Overlap
“ A Total

loss
g‘?

10!

10°
0246 8101214161820222426283032343638404244464850
epoch
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Results and Future Work

@ Progress is being made in characterizing generic features of heterotic CY
vacua — E.g. when/why topological vanishings arise in heterotic couplings.
e Can phrase (all) such constraints (Koszul/fibrations/etc) in a common
language (using homological algebra). Constraints ubiquitous.
@ Open questions:
e Higher order and non-perturbative contributions?
e Dual theories? Hidden Symmetries? Link to Swampland conjectures?
@ Control of the metric is necessary to specify the 4D theory in
compactifciation = ML techniques can provide a powerful new tool.
@ In particular, we have provided the first numeric approx. to SU(3)
structure metrics.
@ Open questions: What next? = Aspects of 4D theory? Moduli

stabilization problems? Stay tuned for the discussion session....
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