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A bit of personal history

When I was deciding where to go to graduate school in 1983, I was
torn between fundamental physics and artificial intelligence. In those
days fundamental physics largely meant particle physics, and I had
been advised by CN Yang that hard times were coming in that field.

So I went to Caltech and began my studies with John Hopfield, on his
then-new neural network model, with the idea that I could go back to
fundamental physics if developments warranted it. I also worked with
Gerry Sussman (this was his first sabbatical year at Caltech).

In fall 1984 I switched to string theory and got my degree with John
Schwarz in 1988. But I kept following AI and neural networks ever
since. I also did ML for quantitative finance at Rentec from 2012-2020.

So, I will tell you about a few of the many ways in which physics
influenced (and influences) machine learning, and then a bit about the
other direction (much more about that from Fabian Ruehle).

Mike Douglas (CMSA/SCGP) Physics and AI June 28, 2021 2 / 14



A bit of personal history

When I was deciding where to go to graduate school in 1983, I was
torn between fundamental physics and artificial intelligence. In those
days fundamental physics largely meant particle physics, and I had
been advised by CN Yang that hard times were coming in that field.

So I went to Caltech and began my studies with John Hopfield, on his
then-new neural network model, with the idea that I could go back to
fundamental physics if developments warranted it. I also worked with
Gerry Sussman (this was his first sabbatical year at Caltech).

In fall 1984 I switched to string theory and got my degree with John
Schwarz in 1988. But I kept following AI and neural networks ever
since. I also did ML for quantitative finance at Rentec from 2012-2020.

So, I will tell you about a few of the many ways in which physics
influenced (and influences) machine learning, and then a bit about the
other direction (much more about that from Fabian Ruehle).

Mike Douglas (CMSA/SCGP) Physics and AI June 28, 2021 2 / 14



A bit of personal history

When I was deciding where to go to graduate school in 1983, I was
torn between fundamental physics and artificial intelligence. In those
days fundamental physics largely meant particle physics, and I had
been advised by CN Yang that hard times were coming in that field.

So I went to Caltech and began my studies with John Hopfield, on his
then-new neural network model, with the idea that I could go back to
fundamental physics if developments warranted it. I also worked with
Gerry Sussman (this was his first sabbatical year at Caltech).

In fall 1984 I switched to string theory and got my degree with John
Schwarz in 1988. But I kept following AI and neural networks ever
since. I also did ML for quantitative finance at Rentec from 2012-2020.

So, I will tell you about a few of the many ways in which physics
influenced (and influences) machine learning, and then a bit about the
other direction (much more about that from Fabian Ruehle).

Mike Douglas (CMSA/SCGP) Physics and AI June 28, 2021 2 / 14



A bit of personal history

When I was deciding where to go to graduate school in 1983, I was
torn between fundamental physics and artificial intelligence. In those
days fundamental physics largely meant particle physics, and I had
been advised by CN Yang that hard times were coming in that field.

So I went to Caltech and began my studies with John Hopfield, on his
then-new neural network model, with the idea that I could go back to
fundamental physics if developments warranted it. I also worked with
Gerry Sussman (this was his first sabbatical year at Caltech).

In fall 1984 I switched to string theory and got my degree with John
Schwarz in 1988. But I kept following AI and neural networks ever
since. I also did ML for quantitative finance at Rentec from 2012-2020.

So, I will tell you about a few of the many ways in which physics
influenced (and influences) machine learning, and then a bit about the
other direction (much more about that from Fabian Ruehle).

Mike Douglas (CMSA/SCGP) Physics and AI June 28, 2021 2 / 14



A bit of general history

Physicists were influential in the early development of many subfields
of biology, and physicists’ early involvement in AI was similar – think of
the brain as a physical system; invent and analyze simplified models.
As an example, the Hopfield model is essentially a spin glass,

H = −
∑
i<j

JijSiSj

It can be used as a model of memory by postulating a dynamics (e.g.
gradient descent) which takes an initial configuration ~Sinit to a related
~Sfinal similar to one of a list of “memories” ~Sa. This will work if we take

Jij =
M∑

a=1

Si
aSj

a

and the number of memories M . 0.1Nspins.
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A bit of general history

During the 80’s, the physics approach merged with other approaches
to “natural” computing, most notably the perceptron (Rosenblatt 1957),
the ancestor of the feed forward network (FFN).

1980’s-90’s – neural networks and physics based analyses, early
applications of FFN’s such as LeNet (Convnet for digit
recognition). Symbolic AI – computer algebra, expert systems.
1990’s – AI winter. Growing recognition that ML is a subfield of
statistics – in physics, see Balasubramanian, cond-mat/9601030.
Phase transitions in combinatorial optimization.
2000’s – Systematic use of simple ML (SVM’s, kernel methods).
2010’s – Golden age of ML based on feed forward networks:
AlexNet in 2012, AlphaGo in 2016 and Bert/GPT-2 in 2018.

Just as for string theory, many ideas in AI and ML went through an
initial phase of great creativity and excitement, and then a phase of
being deeply unfashionable, until convincing breakthroughs were
made.
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Standard ML tasks

Supervised learning ∼ function fitting. Given data points (xa, ya)
learn the “best” ya = FW [xa] from a parameterized space of
functions FW . (The parameters W are often called “weights”.)
For example, classifying images into human defined classes (say
cat, dog, airplane, ...). Here x ∈ RM×N and y is a vector whose
k ’th component is the probability that the image is in class k .
Probabilistic modeling or “self-supervised” learning. Given data
points xa learn the probability distribution PW [x ] from a
parameterized family which best fits the empirical distribution.
For example, the distribution of events in a collider experiment
(tracks, energy deposition, ...). Compare PW [x ] from Standard
Model plus detector simulation with observed PW [x ].
Reinforcement learning – choose actions guided by infrequent
rewards. For example, learning to play a two-player game.
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Standard ML models

The feed-forward network (FFN) or multilayer perceptron (MLP) maps
an input vector space V0 to an output vector space Vd . It is defined as
an alternating composion of two simple functions, parameterized linear
maps (matrices) W (i) from Vi−1 to Vi , and a fixed nonlinear map θ,

FW = W (d) ◦ θ|Vd−1 ◦W (d−1) ◦ . . . ◦ θ|V2 ◦W (2) ◦ θ|V1 ◦W (1).

A standard choice for θ is the “ReLU” function applied componentwise,

θReLU(x) =

{
x , x ≥ 0
0, x < 0

; θV

(∑
i

ci ei

)
=
∑

i

θ(ci)ei .

One can show (Cybenko 1989) that even for two layers (d = 2), for
sufficiently large dimension of the intermediate space V1, this is a
universal function approximator. As the depth d increases, the number
of units needed to do this decreases.
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To use the FFN for supervised learning, one defines an objective (or
“loss”) function which measures the error in the function approximation.
For example, suppose data item xa is in class ka, then we could take

L = −
∑

a

P [FW [xa]]ka
; P[f ]k ≡

exp fk∑M
k ′=1 exp fk ′

.

The ratio of exponentials P[. . .] (often called softmax) maps FW ∈ RM

to a vector of probabilities.

We then find good weights W by numerically minimizing L on a
training dataset (with known ka). Usually one does this by (stochastic)
gradient descent starting from a random initial value W0.

There are many variations (“architectures”) used to adapt to known
properties (“priors”) of the data set and the task. For example, the
convolutional neural network is good for a translationally invariant input
distribution. Many generalizations to other symmetry structures have
been proposed by physicists, see Cheng et al arXiv:1906.02481.
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Important ML research questions

The vast bulk of ML research is practical – code efficient ML software,
develop new datasets and benchmark tasks, try out architectures and
optimization schemes, tune parameters to improve performance.

Some theoretical questions of widely accepted importance have
emerged. The most important is to explain how FNN’s generalize, i.e.
deal correctly with inputs similar to but not literally in the training set.
In statistics one explains this in terms of models which encode priors.
Are there more general mechanisms?

There is a more specific paradox which arises from the fact that
successful FFN’s usually have large numbers of weights (millions,
billions), so many that they can completely fit the training set. The
traditional dogma of statistics says that such a model will “overfit” and
generalize poorly. This was a major reason for the belief (widely held
before 2012) that deep networks would not work.
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The most popular resolution of the paradox is that the initial conditions
and optimization methods used in practice lead to “implicit
regularization” which decreases the effective number of weights.
However this is not universally accepted and the details are not clear.

The double descent curve, from Belkin et al, arXiv:1812.11118.
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What can physics do for ML and AI ?

How can one do theory in such a data-driven field? In statistics, one
focuses on simple and universal distributions. This was the standard
approach in ML during the 1990’s – people developed generative
models which approximated real world distributions of images and
other inputs. However such models are very complicated and do not
perform as well as more general FFN’s trained on large datasets.

Still there can be universal properties of models. A major source for
them uses the analogy to disordered systems in physics. For example,
the Hopfield model with independently drawn random couplings Jij
shares properties of the models with “real” memories, such as the
threshold for the number of memories it can learn, M . 0.1Nspins.

Physics intuition suggests that this threshold will become sharp in the
limit of a large model Nspins →∞ and many memories M →∞. Doing
this with the ratio α = M/Nspins fixed, there is a phase transition: for
α < αc the model can learn all the memories, for α > αc none of them.
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Phase transitions appear in many problems in machine learning, and
theoretical results were first obtained by physicists using the replica
method from spin glass theory. See the textbook by Mézard and
Montanari (2009), Information, Physics, and Computation.

Another general method to produce synthetic data is the
“teacher-student” setup. Here one could take two FFN’s, one a teacher
FWT with random weights WT which generates the input-output
relation. We then train a student FFN FWS on data pairs xa random and
ya = FWT (xa). See Zdeborová and Krzakala arXiv:1511.02476 for
many applications of statistical physics methods in this context.

Random matrix theory is also widely applied in ML and statistics. One
source of its relevance is that the initial conditions for FFN weights are
often taken to be random normal variables, leading to a standard
matrix ensemble. A recent tour de force work which derives the double
descent curve using free probability methods is Adlam and Pennington
arXiv:2008.06786.
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What can ML and AI do for physics?

Many experts predict that artificial general intelligence will be created
within 30–40 years. That equals the span of my own career, from the
Green-Schwarz anomaly cancellation up to now.

What about the coming decade? ML for science is very active, mostly
data driven but some ab initio. Fabian will speak more on this.

What about conceptual influences?
My own work on statistics of vacua was partly inspired by my
study of statistics for ML. This evolved into the String Vacuum
Project, a forerunner of the current ML for string theory work.
Use statistical concepts (KL divergence, information geometry) for
spaces of QFT, e.g. Balasubramanian et al, arXiv:1410.6809
Maybe architecture of FFN’s or other models has physical
analogs. See for example Akutagawa et al arXiv:2005.02636
which develops the analogy: layer propagation ∼ RG ∼ AdS.
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AI for theorem proving

In the last few years I have been looking into the use of AI to do
mathematical reasoning, both as a test of AI and potentially to support
research in the mathematical sciences.

Computers can verify mathematical theorems expressed in formal
terms, i.e. such that every logical step can be made explicitly. But
despite great progress in developing interactive theorem proving
systems such as Lean and Coq, they are hard to learn and use.

Since about 2017 several AI groups (at Google, OpenAI, ...) have been
trying to use ML to solve this problem. There is an analogy between
steps in a proof and moves in a game of solitaire, a problem which can
be attacked using reinforcement learning. Another approach uses
language models (Bert, GPT, ...) to predict the next steps of a proof.

Could we develop a search engine which, given a precise description
of a mathematical concept, finds related documents?
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Fundamental roles of complexity and intelligence?

Physics puts limits on computation, for example erasing a bit costs
kT/2 free energy. What does the theory of computation have to say
about fundamental physics? Aaronson quant-ph/0502072: physical
systems cannot do NP hard computations efficiently. Many recent
ideas about quantum informational underpinnings of space-time.

What does the theory of computation say about cosmology and
vacuum selection? Work with Denef, Greene and Zukowski:

CCL I (hep-th/0602072) – Finding a vacuum which tunes away the
cosmological constant is NP hard in string theory.
CCL II (1706.06430) – Reformulates vacuum selection as a
search problem. Even the hard tuning discussed in CCL I can be
done far more efficiently by a computer than by eternal inflation
with its doubly exponentially small tunneling rates. Almost any
possible scenario could be more likely than eternal inflation.

Related ideas in Khoury et al 1907.07693, Alexander et al 2104.03902.
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