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Strings appear in many places

� Solitonic strings (e.g.

Abrikosov-Nielsen-Olesen

string in 3 + 1d Abelian

Higgs model).

� Confining strings in

Non-Abelian or (in 2d or 3d)

Abelian gauge theories.

� Domain walls in 2+1

dimensional theories.

� Cosmic strings.

� Fundamental strings in

string theory (can have

overlap).
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The long string effective action



Universal aspects of strings I

� In this talk I will discuss stable strings (e.g. confining strings

when there are no fundamental quarks) with a finite tension

T . Generically charged under some 1-form symmetry

(continuous or discrete).

� In most of this talk I will describe the universal aspects of

these strings when they are long and close to being straight,

namely the radius of curvature of the worldsheet is much

larger than the string scale ls = 1/
√
T . This is called

Effective String Theory.
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� References < 2013 in [OA-Komargodski] . [Akhmedov,Arvis,Athenodorou,
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Universal aspects of strings II

� A straight infinite string in a D dimensional QFT breaks the

Poincaré group : ISO(D − 1, 1) → ISO(1, 1)× SO(D − 2).

� While many space-time symmetry generators are broken, their

actions on the worldsheet are not independent, and it turns

out there are just (D − 2) Nambu-Goldstone bosons, which

can be thought of as corresponding to the broken translations

in the transverse directions. Namely, they are scalar fields

labelling the transverse position of the string, which fluctuate

along its worldsheet :
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Universal aspects of strings III

� Generically, unless the string breaks extra symmetries, these

would be the only massless fields on the worldsheet. All other

fields are expected to be at scales of order Ms =
√
T ; in

particular the width of the string is expected to be at this

scale (and thus the mass of any internal excitations).

� When the bulk theory has a mass gap Mgap, the full

low-energy effective action in the presence of a string (below

Mgap, Ms) is thus given by the (D − 2) massless scalars. It

has a derivative expansion, with the first few terms universal.

� We can write this effective action using the string embedding

S =

∫
d2σL[Xµ(σ)]

with diffeomorphism invariance in σ (no preferred choice) and

Poincaré invariance in X . Validity limited to long strings.
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The long string effective action

� Using the long string effective action we can compute physical

observables such as :
1. Low-energy scattering amplitudes of NGBs. Can be

constrained by S-matrix bootstrap.

2. Energy levels of long strings (e.g. wrapped on a large circle, or

stretched between D-branes) : for closed strings

En(L) = TL+
a
(1)
n

L
+

a
(2)
n

TL3
+

a
(3)
n

T 2L5
+

a
(4)
n

T 3L7
+ · · ·

All terms up to O(1/L5) are universal. Open confining string

ground state energy = q − q̄ potential. Can match to lattice.

� We’ll discuss 3 different ways to analyze the long string
effective action S =

∫
d2σL[Xµ(σ)]:

1. No gauge-fixing

2. Static gauge

3. Orthogonal gauge [Polchinski-Strominger]
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The long string effective action - no gauge fixing I

� At the classical level don’t have to gauge-fix, and can look for
actions S =

∫
d2σL[Xµ(σ)] with

� Diffeomorphism invariance in σa (a = 0, 1)

� Poincaré invariance ISO(D − 1, 1) in Xµ (µ = 0, · · · ,D − 1)

� Such actions can be written using various geometric properties

of the string embedding : in the derivative expansion enough

to use
� The induced metric hab(σ) = ∂aX

µ(σ)∂bXµ(σ), and the

curvature Rab[h] constructed from it.

� The extrinsic curvature Kµ
ab(σ) = ∇a∂bX

µ(σ).
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The long string effective action - no gauge fixing II

� Terms in the effective action can be classified by the weight;

all X ’s appear with derivatives so we assign weight w = 0 to

∂aX
µ, and weight w = 1 to any derivative acting on it. Thus

the metric hab has w = 0 and the curvature Kµ
ab has w = 1.

� At w = 0 there is a single diffeo-invariant term that can be

written down, which is just the Nambu-Goto action

Sw=0 = −T

∫
d2σ

√
− det(hab).

We assume T ̸= 0 to have a good derivative expansion around

this. The leading order EOM are □Xµ = 0.
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The long string effective action - no gauge fixing III

� At w = 2 there are two independent terms one can write

down :

Sw=2 =

∫
d2σ

√
− det(h)(a1R[h] + a2(K

µ
ab)

2).

� The first term is a topological invariant - no effect on long

strings.

� The second term (rigidity term) is proportional to the leading

order equations of motion, so it can be eliminated by a field

redefinition (shifted to higher orders).

� So, no corrections at expected leading order ! (Unlike most

effective actions.)
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The long string effective action - no gauge fixing IV

� The leading corrections are thus expected to come from

w = 4 terms (O(1/L7)):

S =

∫
d2σ

√
− det(h)(−T +a3R[h]

2+a4K
4+higher orders),

with two independent coefficients at leading order for D > 3

(one for D = 3).

� Does this remain true quantum mechanically ?
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The static gauge effective action I

� For a long string mostly stretched along X 0,1, natural to

gauge-fix σ0 = X 0, σ1 = X 1 – static gauge.

� Remain just with (D − 2) scalars X i (σ) (i = 2, · · · ,D − 1)

which are the NGBs; no remaining gauge freedom, no

non-trivial Jacobian.

� S =
∫
d2σL[X i (σ)], invariant under ISO(1, 1)× SO(D − 2).

� Disadvantage : Lorentz invariance is not manifest

(non-linearly realized), needs to be carefully checked in

quantum theory (as in light-cone gauge).
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The static gauge effective action II

� Can again classify terms by their weight. At weight w = 0 all

terms are polynomials in y = ∂+X
i∂−X

i and in

z = (∂+X
i∂+X

i )(∂−X
j∂−X

j), and by considering their

Lorentz variation, just one invariant combination

Sw=0 = −T

∫
d2σ

√
− det(ηab + ∂aX i∂bX i ).

Interacting theory ((∂X )4 + · · · ), like chiral Lagrangian.

� At weight w = 2 there is a unique term whose Lorentz

transformation is proportional to EOM, of the form

Lw=2 = c4(∂
2
+X

i∂2
−X

i )(∂+X
j∂−X

j).

However, adding it to the action modifies the Lorentz algebra,

[M+i ,M+j ] ̸= 0, so it is not allowed, and allowed terms start

at w = 4 as in the classical analysis.
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The static gauge effective action III

Lw=2 = c4(∂
2
+X

i∂2
−X

i )(∂+X
j∂−X

j).

� Computations in static gauge require regularization, which

often breaks Lorentz invariance (e.g. cutoff, zeta function). In

those cases one generally does find a c4 term with a specific

(regularization-dependent) value which is needed to restore

Lorentz invariance in the quantum theory. Not present in

dimensional regularization. NOT a Wilson coefficient.

� Non-universal terms start at w = 4 as before. Computations

in this gauge are conceptually straightforward but

complicated.

14



The orthogonal gauge effective action I

� Another natural gauge-fixing of diffeos is the orthogonal

gauge hab(σ) = e2ϕ(σ)ηab.

� Similar (but not the same as) conformal gauge in fundamental

string theory.

� Advantages of this gauge choice include :

1. The leading order Nambu-Goto action is free,

Sw=0 = −2T
∫
d2σ∂+X

µ∂−Xµ.

2. The full Poincaré symmetry ISO(D − 1, 1) is manifest.

3. Remaining diffeo invariance = conformal symmetry, strong

constraint on action.

� Disadvantages : ghosts, complicated constraints on physical

states.

15
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The orthogonal gauge effective action II

� [Polchinski-Strominger] conjectured that one can quantize in this

gauge by imposing Virasoro constraints on physical states, as

for fundamental strings in conformal gauge.

� No direct derivation, but can derive by adding an auxiliary

metric as in the Polyakov formalism

[Hellerman-Maeda-Maltz-Swanson] (also [Hari Dass-Matlock] ).

� Naively conformal invariance does not allow any corrections to

Sw=0 = −2T
∫
d2σ∂+X

µ∂−Xµ.

� However, in the context of the long string effective action

where Z ≡ ∂+X
µ∂−Xµ obeys ⟨Z ⟩ ≠ 0, can allow negative

powers of Z :

S =
β

4π

∫
d2σ

∂+Z∂−Z

Z 2
+ higher orders.

Can arise by integrating out other worldsheet fields.
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The orthogonal gauge effective action III

S =− 2T

∫
d2σ∂+X

µ∂−Xµ +
β

4π

∫
d2σ

∂+Z∂−Z

Z 2

+ higher orders.

� Consistency of this approach requires c = 26, while Sw=0

gives c = D.

� It turns out that the β term also contributes to c (expanding

around a long string), while higher order terms do not, and

this fixes β = (D − 26)/12. So the leading interaction is

universal and proportional to (D − 26)!

� Higher order terms are not fixed, and match with w ≥ 4 terms

in other approaches.
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Summary of effective string action

� All approaches indicate leading order terms universal,

non-universal terms start at w = 4 (corresponding to O(1/L7)

for energy levels of long closed strings, O(s4) for S-matrix).

All computations of energy levels and scattering amplitudes

[Dubovsky-Flauger-Gorbenko] consistent between different

approaches. Leading scattering (for D > 3) universal and

∝ (D − 26) ! (Also other approaches.)

� Can compare (successfully) to :
1. Computation of the effective action when it is under control,

e.g. in perturbation theory for solitonic strings, or holographic

confining strings in weakly curved backgrounds.

2. Energy levels of long strings, in particular from lattice

simulations in D = 3 and D = 4 Yang-Mills theories

[Athenodorou-Teper,many other lattice groups] .
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Constraints from unitarity

� Additional constraints on the effective action come from

requiring unitarity of the effective action, can be studied using

S-matrix bootstrap

[Miró-Guerrieri-Hebbar-Penedones-Vieira,Miró-Guerrieri] .

� It turns out that considering just unitarity of 2 → 2 scattering

can provide lower bounds on the leading non-universal

coefficients a3, a4. For D = 3 where there is just one

coefficient, a lower bound on it can be obtained analytically;

otherwise lower bounds may be obtained numerically.

19



Generalizations I

� The generalization to open strings (Neumann or ending on

D-branes) is straightforward, but extra terms appear on the

boundary.

� For Neumann boundary conditions the leading boundary term

is a mass term S = −m
∫
dτ

√
h00.

� Beyond this, the leading non-universal correction for both

boundary conditions starts at O(1/L4).

� Matches with lattice simulations of confining (and other)

strings.

20



Generalizations II

� When there are more broken symmetries, like

supersymmetries, have extra light fields, and can generalize

the computations.

� In particular the confining string in D = 4 N = 1 SYM theory

has four Goldstinos, effective action analyzed in

[Solberg-Yutushui] . The confining string in D = 2 SYM has only

a Goldstino.

� In D = 4,N = 1, 2 or D = 3,N = 2 theories can also have

BPS strings, where worldsheet effective action is

supersymmetric (+extra non-linearly realized supercharges).

� Many generalizations have not yet been studied.

21



Additional applications

The effective string action also controls

� The width of long strings ∝ log(L).

� Expectation values of large Wilson loops (for confining

strings).

� The spectrum of high-spin states (glueballs and mesons)

[Hellerman-Swanson] – historical origin of string theory. Subtle

for closed strings in D ≤ 4 due to folds

[Sonnenschein-Weissman-Yankielowicz] .
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Additional applications

For instance, for rotating closed strings in D ≥ 5 [Hellerman-Swanson]

found

M2 =2πT

[
2(J1 + J2)−

D − 2

6
+

26− D

12

((
J1
J2

)1/4

−
(
J2
J1

)1/4
)2

+ O(J−1)

 .

23



Additional applications

Cannot use the long-string effective action to compute

� The spectrum of short string states (light mesons and

glueballs).

� The Hagedorn temperature, where a string wrapped on a

Euclidean circle becomes massless (around L ≃ 1/
√
T ).

24



Beyond the low-energy effective

action



Going to higher energies

� Generally that we expect that around the scale
√
T additional

modes, in the bulk and on the worldsheet, will couple to the

Nambu-Goldstone bosons, and the effective action will break

down.

� However, for some strings there is a limit where they decouple

from the bulk fields. In particular this is the case for confining

strings in large N gauge theories [’t Hooft] . In this decoupling

limit the 1 + 1-dimensional theory on the worldsheet

(generally with extra fields) makes sense at all energy scales.

� We expect that in such cases it should be possible to think of

the worldsheet as a fundamental string, such that quantizing

it gives rise also to the bulk physics (perturbatively in 1/N).

� In particular we have examples of this in holographic confining

backgrounds [Witten,Polchinski-Strassler,Klebanov-Strassler,· · · ] .
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Going to higher energies II

� In general no reason why this all-scale worldsheet theory

should be weakly coupled (though it is in some limits of

holographic confining backgrounds which have a supergravity

approximation).

� Do not expect worldsheet to be a bosonic string / NSR

superstring, probably some formalism that can incorporate RR

backgrounds is needed (pure spinor formalism ?).

� So, what can we do ?

� Bottom-up : approximate integrability

� Top-down approaches
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Approximate integrability for QCD strings I

� Specifically for the confining strings of large N D = 3 and

D = 4 Yang-Mills theories, no reason to expect a weakly

coupled worldsheet theory. So the best hope to understand the

worldsheet would be if it happens to be an integrable theory.

� Surprisingly, [Dubovsky-Flauger-Gorbenko, Dubovsky-Gorbenko] found

that these strings are well-approximated by integrable theories

on the worldsheet (whose spectrum can be computed exactly

for all L) !

� For D = 3 the confining string is well-approximated by the

bosonic Nambu-Goto action (integrable for D = 3, 26)

S = −T

∫
d2σ

√
h = −T

∫
d2σ

√
− det(ηab + ∂aX∂bX ),

even down to values of L where the effective action is

expected to break down. 27



Approximate integrability for QCD strings II

� For D = 4 the integrable model includes, in addition to the

Nambu-Goldstone bosons, an extra pseudo-scalar field a(σ):

Sa =
Qa

4

∫
d2σa ·

√
−hhabϵµνρσ∂at

µν∂bt
ρσ,

where tµν = ϵab√
−h

∂aX
µ∂bX

ν . This theory happens to be

integrable for Qa =
√

7
16π .

� For a specific mass ma this matches the confining string

spectrum very well (including pseudo-scalar excitations).

� The reasons for this approximate integrability are not yet clear.

� Can we systematically expand the QCD string action around

these integrable theories (additional fields / interactions) ?
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Top-down – asymptotic freedom

� Holography : worldsheet theory of QCD string should have

some field ϕ(σ) that can be thought of as the “radial

direction”. Long strings will sit near the minimum value of ϕ,

and there ϕ is massive and can be integrated out to reproduce

the effective string action. For large ϕ we should be in the UV

where the gauge theory is free – so worldsheets should

become “fishnets”, and the worldsheet action should become

topological (“string bits”).
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some field ϕ(σ) that can be thought of as the “radial

direction”. Long strings will sit near the minimum value of ϕ,

and there ϕ is massive and can be integrated out to reproduce

the effective string action. For large ϕ we should be in the UV

where the gauge theory is free – so worldsheets should

become “fishnets”, and the worldsheet action should become

topological (“string bits”).

� From this point of view should start from string dual of a free

gauge theory (for N = 4 SYM some versions were suggested

by [Berkovits-Vafa,Berkovits,Gaberdiel-Gopakumar] , and these can

perhaps be generalized to the non-supersymmetric case) and

deform it by the gauge coupling.
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Top-down – known duals I

� Alternatively we could start from a theory whose holographic

dual is known, and which we can deform to get D = 3 or

D = 4 Yang-Mills. Shows that QCD string is a (limit of a)

standard fundamental string (at least if no phase transitions).

� For instance, we could start from N = 4 SYM and add

masses to all scalars/fermions. In the limit of m → ∞,

g2
YMN → 0 keeping the low-energy QCD scale

ΛQCD ≃ m exp
(
−#/g2

YMN
)
fixed, this will give the D = 4

QCD string. But this requires understanding the precise string

dual of N = 4 mass deformations (complicated backgrounds

[Polchinski-Strassler] ), and then also taking the free limit

g2
YMN → 0.
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Top-down – known duals II

� Or, we could take a similar limit for N = 4 SYM on a circle

with anti-periodic boundary conditions for fermions [Witten] ,

and then a limit of R → 0, g2
YMN → 0 keeping the D = 3

gauge coupling fixed would give the D = 3 QCD string. This

requires understanding the precise string worldsheet for the

corresponding background = AdS black brane (also

complicated).
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Summary

� The effective action of long strings has several universal terms

that control many of its low-energy properties.

� For large N confining strings there should be a description of

the worldsheet at all energy scales, but this is yet to be found.

Does this exist for any non-confining strings ?

� Can we learn from well-understood cases like D = 2 QCD

strings [Gross-Taylor] , or the (topological) closed string duals of

Chern-Simons theory [Gopakumar-Vafa,Ooguri-Vafa] ?

� More discussion in a few hours [Dubovsky-Klebanov] .

� Thank you for listening !
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