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Two related string challenges

• Moduli stabilization

• De Sitter

it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).
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Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height
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V 𝟎 at weak coupling and large volume. 
If quantum corrections lead to another minimum it 
most probably be at strong coupling, unless…

Dine, Seiberg 1985

Only fully trust runaway part 
(swampland conjecture, Vafa et al
See Valenzuela’s, Torroba’s talks)



String Compactifications

• No free parameters in string theory

• But many discrete parameters after 
compactification: (topological numbers of compact 
manifold, ranks of gauge groups, dimensionality of spacetime, 
fluxes of different forms,…) 

• Not only gs and 1/V expansions but many 
expansions if there are many moduli.

• Never have full control but may lead to weak 
enough coupling and large enough volumes



Moduli Stabilisation in IIB

• Moduli S, Ti, Ua

• Quantum corrections
• Three options: 

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli Ua and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G3 fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤6G3 = iG3)

which is compatible with the Hodge decomposition G3 2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli Ti are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry Ti ! Ti+ ici with

constant cis that together with the holomorphicity of the superpotential forbids any Ti

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = Wflux(S,U) +Wnp(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

V = e
K
⇣
K

�1
ab̄

DaWDb̄W

⌘
� 0 (2.5)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�M ) and Kähler potential K(�M , �̄M̄ ) in units of Mp:

VF = e
K
⇣
K

�1
MN

DMWDMW � 3|W |
2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K
�1
i|̄ KiK|̄ = 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the Ti fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

DUaW = DSW = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli Ti have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry DTW ⇠ KTW0 6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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compute the structure of �V . It takes schematically the form [37]:

�V / W
2
0 �K +W0�W (2.11)

If there were only one single expansion parameter and if, as usual, W0 � �W and �K �

�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W0 is tuned

to W0 ⇠ �W = Wnp. This then requires �W
2 terms to be also included in the expansion

stabilising the Ti fields when they compete with the W0�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W0�W which

for �K ⇠ 1/V and �W ⇠ e
�a⌧ implies that the volume is exponentially large V ⇠ e

a⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/gs which is large at

weak string coupling gs and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W0 ⌧ 1 whereas LVS works for

standard values of W0 ⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the e
K factor in the

general expression for V the order of V0 is V0 ⇠ M
4
p /V

2
⇠ M

4
s whereas in LVS the order

of �V is �V ⇠ W
2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s . Having V0 vanishing at the minimum and

�V ⌧ M
4
s supports the validity of using the EFT at scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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IIB Features

• Fluxes imply (warped) Calabi-Yau
• No-scale structure
• Scales m3/2<< MKK<<Ms<<Mp

• Two sets of 3-fluxes F3, H3 (allows `tuning’)

• GVW Superpotential W(S,U) not renormalised!
• Many loop (gs) and 𝛼’ corrections to K computed
• Kahler moduli gauge couplings Wnp(T)



de Sitter?

• Anti D3 brane 

• D+F terms in EFT or T-branes

• Complex structure/Dilaton uplift (DUW≠ 0, DSW≠ 0)

• Non critical strings, negative curvature 

• Kahler uplift

• Nonperturbative effects on D3 branes, ...

Wrapped D7 Brane

RR Fluxes

NS Fluxes

Anti D3 Branes

Throat

Figure 1: Description of a deformed conifold with 3-form fluxes (a KS throat) embedded

in a compact geometry, with anti-D3-branes trapped at the tip of the throat. Beyond the

throat, the compactifications may include other ingredients, like D7-branes wrapped on

4-cycles, etc, which are not relevant for the generation of the warp factor on the throat,

but may lead to other interesting effects (like non-perturbative superpotentials).

embeds it into different possible compactification manifolds. This approach separates

the local properties of the models, such as the gauge group, the massless matter

spectrum, running of gauge coupling, etc, from properties depending strongly on the

global features of the compactification, such as supersymmetry breaking, scalar field

potentials, etc.

A large class of local D-brane configurations leading to chiral 4d world-volume

gauge sectors is provided by D3-branes (or D3-branes) at singularities. It is thus

natural to combine techniques of model building with D3-branes at singularities

with the construction of highly warped throats using deformed conifolds with fluxes.

Indeed in this paper we construct explicit geometries containing deformed conifolds,

and orbifold singularities sitting at the corresponding 3-spheres. Introduction of an

explicit set of suitable 3-form fluxes leads to a warped throat, with the compact

3-cycles and the orbifold singularity at its tip. Finally introducing a set of D3-branes

and D7-branes (all dynamically trapped at the tip of the throat) at the orbifold

3



Achievements
• Well defined prescription exists that includes general

stringy ingredients: branes, orientifolds, warping, anti (T)-branes, 
perturbative, non-perturbative effects, etc. 

• W0<<1 is plausible due to the large number of fluxes.
• Perturbative effects in LVS in control as the volume is 

exponentially large. All computed so far harmless. 

• Antibrane: nonlinearly realised SUSY (nilpotent goldstino)

• Hierarchies: 

Type IIB flux compactifications provide two ways to overcome this problem. First,

in the KKLT scenario the big discrete degeneracy of flux vacua is used to tune W0 to

an exponentially small value so that W0 ⇠ Wnp. This then requires W
2
np terms to be

also included in (2.9) stabilising the T -fields when they compete with W0Wnp terms [15].

Notice that in this limit quantum corrections to the Kähler potential can be consistently

neglected since the first term in (2.9) is subdominant given that W 2
0 Kp ⌧ W0Wnp ⇠ W

2
0

for Kp ⌧ 1 (this is always the case at large volume since the perturbative e↵ects Kp are

suppressed by inverse powers of V).

The second case is LVS models where the fact that there is more than one expansion

parameter plays the key rôle. In this case the two terms in (2.9) can compete with each

other to provide a minimum as long as each comes from a di↵erent expansion. Hence at

the minimum one has W
2
0 Kp ⇠ W0Wnp which, for Kp ⇠ 1/V and Wnp ⇠ e

�⌧s , yields

an overall volume of order V ⇠ W0 e
⌧s . Here ⌧s is a blow-up mode that gets stabilised to

values of order 1/gs. It is therefore large for weak string coupling, implying that the CY

volume is exponentially large [47–49].

In summary, KKLT requires a major tuning of the fluxes to obtain W0 ⇠ Wnp ⌧ 1,

whereas LVS works for natural values of the flux superpotential of order W0 ⇠ O(1� 100)

(as found in concrete examples [50, 51]) but depends more on perturbative corrections to

K. Notice that, from the e
K factor in the general expression (2.5), the order of V0 is

V0 ⇠ M
4
p /V

2
⇠ M

4
s , whereas in LVS the order of �V is �V ⇠ W

2
0M

4
p /V

3
⇠ M

2
sm

2
3/2 ⌧ M

4
s .

Having V0 vanishing at the minimum and �V ⌧ M
4
s supports the validity of the EFT at

scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [52–59]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on a CY orientifold. This is

a controlled procedure if the compactification volume is large so that the following

hierarchy of scales is valid:

E ⌧ MKK =
Ms

V1/6
⌧ Ms ⌘

1

`s
⌘

1

2⇡
p
↵0

= g
1/4
s

Mp
p
4⇡V

. (2.10)

As mentioned above, at tree-level the dilaton and the complex structure moduli are

fixed supersymmetrically at DSW = DUW = 0 via non-zero quantised G3 fluxes
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Abstract: The magnitude of the flux superpotential Wflux plays a crucial rôle in de-

termining the scales of IIB string compactifications after moduli stabilisation. It has

been argued that values of Wflux ≪ 1 are preferred, and even required for physical and

consistency reasons. This note revisits these arguments. We establish that the cou-

plings of heavy Kaluza-Klein modes to light states scale with the internal volume as

g ∼ MKK/MP ∼ V−2/3 ≪ 1 and argue that consistency of the superspace derivative

expansion requires gF/M2 ∼ m3/2/MKK ≪ 1, where F is the auxiliary field of the light

fields and M the ultraviolet cutoff. This gives only a mild constraint on the flux superpo-

tential, Wflux ≪ V1/3, which can be easily satisfied for O(1) values of Wflux. This regime

is also statistically favoured and makes the Bousso-Polchinski mechanism for the vacuum

energy hierarchically more efficient.

1. Argument from Consistency I: a small W0 has been required by the following con-

sistency argument. The use of a derivative expansion in a supersymmetric effective

field theory indicates that there should also be an expansion in powers of ϵ ≡ F/M2

where F is the auxiliary field of the relevant light fields and M an ultraviolet cutoff.

Imposing ϵ ≪ 1 implies that the superpotential which is proportional to F should be

very small [3, 4].

2. Argument from Consistency II: a natural value W0 ≃ O(1−10) has been argued to be

incompatible with a four-dimensional effective field theory since it implies background

fluxes with an energy density of order the string scale: Vflux ≃ O(M4
s ). This is not

true since the important quantity to look at is not the scaling of the flux potential

energy but its vacuum expectation value (VEV). If the dilaton and the complex

structure moduli are fixed supersymmetrically, then this VEV is vanishing at leading

order, even if it would formally scale as M4
s . In order to trust the four-dimensional

effective field theory, one has to check that the effects used to fix the Kähler moduli,

develop a potential whose VEV satisfies ⟨V ⟩ ≪ M4
KK .

3. Argument from Phenomenology I: a small W0 has been argued to be necessary also

for a viable phenomenology. In the original efforts to stabilise the Kähler moduli T , a

non-perturbative term Wnp was added to Wflux [5]. In order to stabilise the T -moduli

at values large enough to trust the effective field theory, Wnp has to be of the same

order as Wflux, requiring the latter to be ‘fine tuned’ to values as small as 10−10 in

string units. Even though Wflux is determined from a combination of integers, small

values of Wflux are allowed in the multi-dimensional space of integer fluxes.

4. Argument from Phenomenology II: the string scale Ms is set by the Planck scale MP

and the internal volume V, Ms ≃ MP /V1/2, whereas the gravitino mass depends also

on W0: m3/2 ≃ W0MP /V. Therefore the standard phenomenological preference for

Ms ≃ MGUT ≃ 1016 GeV from unification and m3/2 ≃ Msoft ≃ O(1) TeV in order to

address the hierarchy problem, requires V ≃ O(104) and W0 ≃ O(10−11).

5. Argument from Statistics: a small W0 has also been argued to be preferred on statis-

tical grounds. In the original treatments [6] the magnitude of W0 was argued to be

uniformly distributed. More recently, arguments have been given that the statistical

distribution of W0 can peak at zero [7], indicating some preference for a hierarchically

small value of W0. Similarly, recent statements have been made arguing that a small

cosmological constant requires a small W0 [8, 9].
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Challenges to KKLT, LVS,...
• Fluxes under control only in SUSY 10D? (Sethi, Kachru-

Trivedi, de Alwis et al…)

• All SUSY breaking part is 4D EFT. Trust EFT?(Carta, et 

al, Moritz et al, Kallosh, Gautason et al, Hamada et al, Kachru et al.)

• Tuning W0<<1? in KKLT (Demirtas et al, Alvarez-Garcia et al)

• Higher corrections in LVS? (Cicoli et al.)

• Antibranes (non susy, singularity?) (Bena et al, Moritz et al, 

Cohen-Maldonado et al, Gao  et al, Crino et al.) 

• Tadpole problem (Bena et al., see Grana’s talk)



Quintessence from Strings?
• Need stabilise all moduli except for quintessence 

field: as difficult as getting de Sitter

• Or have many fields rolling but slower than 
quintessence. Difficult.

• Fifth force and varying couplings constraints (e.g. 
volume modulus or dilaton problematic)

e.g. Banks, Dine, Douglas ‘00
Yukawa’s

bounds from fifth-forces [12]. Moreover, if the quintessence field is a string modulus

which sets the visible sector gauge kinetic function, a rolling modulus would give

rise to a time variation of the coupling constants. This last problem can be avoided

simply by considering a modulus which is not supporting the visible sector stack of

D-branes. However, evading fifth-force bounds is more complicated. The volume

mode couples democratically to all fields with Planckian strength, and so it cannot

be the quintessence field. This is a direct consequence of the locality of the SM

construction. The fact that the volume mode has to couple to SM fields can be

seen by looking at the relation between the physical Yukawa couplings Ŷijk and the

holomorphic ones Yijk(U) which depend just on the complex structure moduli because

of the holomorphicity of the superpotential and the axionic shift symmetry [139]:

Ŷijk = e
K/2 Yijk(U)q

K̃iK̃jK̃k

, (3.4)

where K̃i is the Kähler metric for matter fields. Due to locality, the physical Yukawa

couplings should not depend on the overall volume, and so the matter Kähler metric

K̃i has to depend on the volume mode V in order to cancel the powers of V in

e
K/2. Consequently, the volume mode has always a direct Mp-suppressed coupling

to SM-fields from expanding the matter Kähler metric in the kinetic terms.

The best case scenario is therefore when the quintessence field is a modulus di↵er-

ent from the overall volume which supports a hidden sector stack of branes, while

the visible sector is localised on a blow-up mode which does not intersect with the

quintessence divisor. This has been advocated in the context of swampland conjec-

tures in [9]. However even in this case, one would need to check that no interaction

between the quintessence modulus and visible sector fields is induced by kinetic mix-

ing between the moduli (see for example the moduli redefinitions in [140–142] induced

by non-canonical kinetic terms) or between hidden and visible sector Abelian gauge

bosons [143–146]. This issue is currently under detailed investigation [147].

3.2 The swampland and the Higgs

As already pointed out in [22], the swampland conjecture is in tension with basic features

of the Higgs potential. In fact if h is the standard Higgs field and � the quintessence field,

the total scalar potential can be written as:

V = Ṽ (h) + V̂ (�) with Ṽ (h) = �
�
h
2
� v

2
�2

. (3.5)

The swampland conjecture at the maximum of the Higgs potential for h = 0 then implies:

|rV |

V
& 1 ,

V̂�(�)

Ṽ (h) + V̂ (�)
=

V̂�(�)

�v4 + V̂ (�)
& 1 . (3.6)

However the quintessence potential today has to scale as V̂ (�0) = ⇤4. Typical quintessence

potentials have the form V̂ (�) = ⇤4
e
�� with �0 ' 0. Hence V̂�(�0) ' V̂ (�0) = ⇤4, imply-

ing that the ratio in (3.6) violates the swampland conjecture by 57 orders of magnitude!
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Open Questions
• Control of quantum and 𝜶’ corrections 

• Realistic phenomenology (de Sitter but no SM?)

• Moduli Stabilisation in F-Theory

• Populating the landscape (large # of U moduli + 

vacuum transitions)

• ...

See A. Schachner’s poster

it to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ

1

2

3

4

V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height
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Populating the String Landscape.

Motivations

• How is it populated? 

Eternal inflation is not enough.

• Starting from a given de Sitter, is it possible 

 to up-tunnel?

V = e− nχ
Mχ V0(ϕ) + V1(χ)

V0(ϕ) = μ4
ϕ ( ϕ2

M2
ϕ

− 1)
2

V1(χ) = μ4
χ [−e−2χ/Mχ + ae−χ/Mχ + be−3χ/Mχ]

V

χ

ϕ

[Aguirre, Johnsons, Larfors, ’09, ’10]


