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Introduction

Chern Simons theories coupled to dynamical matter fields
are of interest for several reasons.
First, in parity non invariant theories, the one derivative
Chern Simons Lagrangian generically dominates the two
derivative Yang Mills kinetic term and so governs gauge
dynamics at low energies.
Second, the Chern Simons coupling, 1

k , does not flow
under the renormalization group, so fine tuning matter
masses to zero often results in conformal dynamics.
Third, Chern Simons matter theories host anyonic
excitations with ‘non half integer’ spins whose S matrices
display unusual crossing properties
Fourth, the some of these theories have conjectured
AdS/CFT dual descriptions in large N limits.
Fifth, some of these theories they enjoy invariance under
(conjectured) strong weak coupling Bose Fermi duality
even without sypersymmetry.
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Introduction

Sixth, and most importantly for this talk, several exact results
are available for two interesting limits of these theories.

(1) When the mass of the matter fields is taken to infinity,
our theories reduces to pure Chern Simons theory which
has an intricate, beautiful and very thoroughly understood
exact solution.
(2) When all matter fields are in the fundamental, and N
and k are taken to infinity with

λ =
N

k + sgn(k)N

held fixed, the theory is once again exactly solvable.
Several interesting dynamical quantities have been exactly
computed in this limit.
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Introduction

Solvable limits of theories are special. Hilbert Spaces of
theories in such limits often admit mathematically elegant
descriptions - sometimes given by imposing natural
constraints on free theries.
In this talk I will attempt to present such a description of the
Hilbert space of the Chern Simons fundamental matter
theories in the solvable large N limits described in the
previous transparency. It is possible that the lessons learnt
will also have some value away from the large N limit.
The all orders expression for the thermal free energy of
S2 × S1 path integral has already been obtained [1]-[11] by
analytically summing all planar diagrams. We will use the
most complete expressions - presented in [11] S.M, A. Mishra, N.

Prabhakar, 2020 as the starting point of the analysis of this talk.
Over the next few slides I present this result - which I will
later interpret - in some detail.
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S2 × S1 Partition Function: Structure

In the limit N →∞, k →∞, V2 →∞, with all ratios of
these quantities, as well as the temperature T , chemical
potential µ, and all masses and couplings held fixed, the
S2 times S1 partition function ZS2×S1 is given by an
integral over the unitary matrix U, the zero mode of the
holonomy around the time circle

ZS2×S1 =

∫
[dU]CS e−V2v [ρ] , (1)

where [dU]CS is the usual Haar measure subject to the
constraint

ρ(α) ≤ 1
2π|λ|

, ρ(α) = lim
N→∞

1
N

N∑
j=1

δ(α− αj) . (2)

(eiαj are the eigenvalues of U and ρ(α) is the eigenvalue
distribution function).
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S2 × S1 Partition Function: Theories

v [ρ] in (1) above depends details of the matter Chern
Simons theory under study. In this talk we study the
regular fermion and critical boson theory defined by

SU(NF )(kF− 1
2 ) +

∫
ψ̄Dµγ

µψ + mreg
F ψ̄ψ

U(NB)(kB ,kB) +

∫ [
Dµφ̄Dµφ+ σB

(
φ̄φ+

NB

4π
mcri

B

)]
(the Chern Simons levels and ranks depicted below are sample examples; we will list all possibilities

below; our main results also apply to the more complicated regular boson and critical fermion theories.)

For each theory, computation reveals that the quantity v [ρ]
is given by the extremization, over two auxilliary variables,
of a so called off shell free energy. Schematically

v [ρ] = minζiF (ζi)
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S2 × S1 Partition Function: Fermionic v [ρ],

In the case of the Regular Fermion theory, F [ζi ] is given by

FRF(ĉF , C̃) =
NF T 2

6π

[
− 8λ2

F C̃3 − 3C̃
(

ĉ2
F −

(
2λF C̃ + m̂F

)2
)

− 6λF m̂F C̃2 + ĉ3
F

− 3
∫ ∞

ĉF

d ε̂ ε̂
∫ π

−π
dαρF (α)

(
log
(
1 + e−ε̂−µ̂−iα)+ log

(
1 + e−ε̂+µ̂+iα)) ] .

(3)

Here NF is the gauge rank, λF is the t’Hooft coupling, C̃
and ĉF are auxilliary variables that have to be extremized
over (ĉF has the interpretation of the thermal mass in units
of temperature) and

µ̂ =
µ

T
, m̂F =

mF

T

Note that only the third line of (3) depends on ρ(θ) or µ
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S2 × S1 Partition Function: Bosonic v [ρ],

In the case of the Critical Boson theory, F [ζi ] is given by

FCB(cB, S̃)

=
NBT 2

6π

[
3
2

ĉ2
Bm̂cri

B − 4λ2
B
(
S̃ − 1

2 m̂cri
B
)3

+ 6|λB|ĉB
(
S̃ − 1

2 m̂cri
B
)2 − ĉ3

B

+ 3
∫ ∞

ĉB

d ê ê
∫ π

−π
dα ρB(α)

(
log(1− e−ê+µ̂+iα) + log(1− e−ê−µ̂−iα)

)
−Θ(|µ| − cB)

(|µ̂| − ĉB)2(|µ̂|+ 2ĉB)

2|λB|

]
. (4)

Here NB and λB are the gauge rank and t’ Hooft coupling,
S̃ and ĉB are auxilliary variables that have to be extremized
over (ĉB has the interpretation of the thermal mass in units
of temperature) and

µ̂ =
µ

T
, m̂cri

B =
mcri

B
T

Note that only last two lines of (3) depends on ρ(θ) or µ
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S2 × S1 Partition Function: Interchanging Orders

In summary for both fermions and bosons

ZS2×S1 =

∫
[dU]CS minζi

[
e−V2F (ζi ,ρ)

]
, (5)

At leading order in the large N limit, the integral over U
reduces to a saddle point extremization over ρ(θ). The
extremaization over ζi and ρ(θ) can be performed in any
order, so (5) can be rewritten as

ZS2×S1 = minζi

[∫
[dU]CSe−V2F (ζi ,ρ)

]
, (6)

To evaluate ZS2×S1 we must thus
Step (1): Evaluate I(ζi) =

∫
[dU]CSe−V2F (ζi ,ρ) at fixed ζi .

Step (2): Extremize I(ζi) over ζi .
Step I is universal (indep of details of contact interactions).
Step 2 is non universal and accounts for these interactions.
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Step I: Fermions

In Step 1 for fermions we are required to evaluate

IF =

∫
[dU]CS Z F

NS(U) ,

Z F
NS(U) = e

NF T 2V2
2π

[ ∫∞
ĉF

d ê ê
∫ π
−π

dαρF (α)
(

log
(

1+e−ê−µ̂−iα
)

+log
(

1+e−ê+µ̂+iα
))]

.

(7)

The exponent of Z F
NS (U) includes all terms in FF (ζi ) that depend on either ρ or µ.

It is not difficult to verify that

Z F
NS(U) = TrHNS

(
Ue−β(H−µQ)

)
, (8)

Where the trace is taken over HNS the free Fock Space of
free fermions of mass cF = ĉF T propagating on a (very
large) S2.
Consequently

IF =

∫
[dU]CS TrHNS

(
Ue−β(H−µQ)

)
(9)
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Step I: Bosons

In Step 1 for bosons we are required to evaluate

IB =

∫
[dU]CS Z B

NS(U)

Z B
NS(U) = e−

NB T 2V2
2π

∫∞
ĉB

d ε̂ ε̂
∫ π
−π

dαρF (α)
(

log
(

1−e−ε̂−µ̂−iα
)

+log
(

1−e−ε̂+µ̂+iα
))
×

e−
NB T 2V2

2π Θ(|µ|−cB)
(|µ̂|−ĉB )2(|µ̂|+2ĉB )

6|λB | .

(10)

Once again the exponent of ZB(U) includes all terms in FB(ζi ) that depend on either ρ or µ

This can be rewritten as

IB =

∫
[dU]CS TrHNS

[(
Ue−β(H−µQ)

)(
e−

NB T 2V2
2π Θ(|µ|−cB)

(|µ̂|−ĉB )2(|µ̂|+2ĉB )

6|λB |

)]
(11)

The second term in the trace is a new element missing in
the case of fermions. This term is independent of ρ but
depends on µ and is universal (indep of details of contact
interactions) and so should be accounted for in step I
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Toy Model for IF

Let us momentarily consider a quantity similar to IF .

ĨF =

∫
[dU] TrHNS

(
Ue−β(H−µQ)

)
(12)

where dU is the usual unmodified Haar measure.
ĨF has a simple and familiar Hilbert Space interpretation.
The free fermion Fock Space can be decomposed into a
sum over irreducible representations of U(NF ). The
integral over U in (13) simply projects this Fock Space onto
the U(NF ) singlets.
In other words

ĨF = TrHSing

(
e−β(H−µQ)

)
(13)

where HSing is the projection HNS to U(NF ) singlets.
Question: Does IF have an interpretation similar to ĨF ? And
whats the story with IB?
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Hilbert Space for Step I

The questions posed at the end of the last paragraph have
a simple answer. IF and IB both have a simple Hilbert
Space interpretation. Each of those quantities can be
thought of as the large N limit of the free Fermionic /
Bosonic Fock space, restricted to the space of WZW (or
quantum group) singlets.
In order to explain why this is true (and also precisely what
these words mean), over the next few slides I will make a
brief digression to review the types of SU(N)k and
U(N)k ,k ′ Chern Simons theories, their WZW duals and the
counting of their conformal blocks.
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SU(N)k and U(N)k ,k ′ Chern Simons theories.

SU(N)k Chern Simons theories (and their WZW duals) are
relatively famliar. They are characterized by a single level k
U(N)k ,k ′ Chern Simons theories may be less familiar.
These theories are characterized by two levels k and k ′.
Roughly speaking, k is the level for the SU(N) part of
U(N), while Nk ′ is the level for the U(1) part of U(N). It
turns out that consistency forces

k ′ = κ+ qN

where κ = k + sgn(k)N and q is an integer.
We call the choice q = 0 the Type I U(N) theory at level k .
We also name the choice q = −1 the Type II U(N) theory
at level k .
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SU(N)k and U(N)k ,k ′ and duality.

Pure (matter free) SU(N)k theories are well known to be
level rank dual to Type II U(|k |) Chern simons theories at
level −N. It is also well known that Type I U(N) pure Chern
Simons theories at level k are level rank dual to U(|k |)
theories at level −N.
The conjectured Bose Fermi dualities between regular
fermion and crtitical Boson Chern Simons matter theories
also involve either SU(N) /Type II or Type I / Type I theories
on the two sides of the duality.
As no known level rank duality in relates two SU(N)
theories, the study of duality forces us to enlarge our
horizons to include U(N) Type II (and then very naturally
also Type I) theories rather than focussing only on their
SU(N) counterparts.
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Conformal Blocks and Chern Simons Wilson Lines

Consider pure Chern Simons theory on S2 × S1 with m
Wilson lines, each at a point on the S2 but wrapping the S1

once. The Wilson lines in question transform in the
representations R1, R2 . . . Rm where each representation
is restricted to be integrable. Over 30 years ago, Witten
famously demonstrated that the result of this path integral
is an integer which counts the number of WZW conformal
blocks on S2 with primary insertions in the representations
R1, R2 . . . Rm. This number can be evaluated using the
Verlinde formula, but it may also be evaluated directly in 3d.
Again, almost 30 years ago, Blau and Thompson used a
clever gauge fixing to explicitly evaluate the CS path
integral on S2 × S1. Their explicit SU(2)k results are easily
generlized to SU(N)k . We list our results on the next slide.
Caution: All formulae overleaf apply only to integrable
insertions. Unsatisfying. Would be good to understand
better why.
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Counting SU(N)k conformal blocks on S2

Nsing =
1

NκN−1

∑
{wi}

∏
i<j

|wi − wj |2
m∏

p=1

χRp (wi) (14)

Here wi are the eigenvalues of the SU(N) holonomy,
N∏

i=1

wi = 1, and |wi | = 1 ∀i (15)

Moreover a sum over fluxes in the path integral turns the
integrals over holomies into discrete sum taken over all
possible distinct choices of N distinct wi that obey (14)
together with the condition

wκ
i = wκ

j ∀i , j (16)

(14) may be verified to infact simply be a rewriting of the
Verlinde formula in physically recognizable terms.
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Counting U(N)k ,k ′ conformal blocks on S2

In this case we find

Nsing =
1

(κ+ qN)κN−1

∑
{wi}

∏
i<j

|wi − wj |2
n∏

p=1

χRp (wi) (17)

where
|wi | = 1 ∀i , wκ

i = wκ
j ∀i , j

wκ
m

(
N∏

i=1

wi

)q

= (−1)N+1 ∀m
(18)

Our attempt at generalizing the Blau and Thompson result
to U(N) gave us the formula above with (−1)N+1 replaced
by unity. However recasting the Verlinde formula in this
form reveals this factor. Several consistency checks and
comparisons with earlier literature give overwhelming
evidence this factor is correct. To be done: Correct the naive path integral

derivation to reproduce this term.
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Counting Type I U(N) conformal blocks on S2

The formula of the previous slide simplifies at q = 0, i.e. in
the Type I theory, to

Nsing =
1
κN

∑
{wi}

∏
i<j

|wi − wj |2
n∏

p=1

χRp (wi)

wκ
m = (−1)N+1 ∀m

(19)

For simplicity in the rest of this talk we will work with the
Type I theory, (our final results apply to every case)
(19) is a very particular discretization of the Weyl integral
formula of classical group theory. In the large N limit the
spacing between two eigenvalues, 1

2πκ → 0 the
discretization spacing→ 0 so (19) reduces to the classical
Weyl formula except for one constraint;

ρ(θ) ≤ 2πN
κ

=
2π
λ
.

Shiraz Minwalla



[dU]CS from conformal blocks

In equations, in the t’Hooft large N limit

1
κN

∑
{wi}

∏
i<j

|wi − wj |2
n∏

p=1

χRp (wi)→
∫

[dU]CS

n∏
p=1

χRp (wi)

It follows that the quantity IF above does indeed admit the
interpretation we proposed: it is the partition function of the
Fock Space restricted to the WZW singlet sector.
While thats great, it raises the obvious question: what
about the Bosons? What is the origin of the extra factor for
bosons in step 1? We now now turn to this question
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θ(µ− cB)... from conformal blocks

Consider a Type I U(N) Chern Simons theory coupled to
fundamental bosons on S2. Let a index the positive energy
solutions of the Klein Gordon equation, with mass cB, on
S2. Clearly the U twisted partition function over the free
bosonic Fock Space is given by a product of partition
functions, one for every free particle state
Explicitly

Tr
(

Ue−β(H−µQ)
)

=
∏

a

 NB∏
ia=1

1
1− e−β(Ea−µ)wia

 NB∏
ia=1

1
1− e−β(Ea+µ)w∗ia


(20)

Note that

1
1− e−β(Ea−µ)wia

=
∞∑

n=0

e−nβ(Ea−µ)χS
n (U) (21)
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Truncation for Bosons

Now the partition function of the bosonic Fock space
restricted to WZW singlets is not given simply by

1
κN

∑
{wi}

∏
i<j

|wi − wj |2Tr
(

Ue−β(H−µQ)
)

(22)

Terms with n > kB in (21) are non integrable insertions.
Conformal blocks involving such insertions should vanish.
(22) does not correctly account for this fact (see comment
in red before (14)), which must thus be inserted by hand.
The correct truncation of the free boson Fock space to
WZW singlets is given by

I I
B =

1
κNB

∑
{zi}

∏
pairs

|wi − wj |2
∏

a

[ NB∏
ia=1

1
1− e−β(Ea−µ)wia

∣∣∣∣∣
kB NB∏

ia=1

1
1− e−β(Ea+µ)w∗ia

∣∣∣∣∣
kB

]
(23)Shiraz Minwalla



Implication of the Truncation

It is not difficult to prove that

Q(y) =

NB∏
i=1

1
1− wiy

∣∣∣∣
kB

= (1 + (−1)Nyκ)

NB∏
i=1

1
1− ziy

= exp
(
− tr ln

(
1− yU

)
+ ln

(
1− yκ

)) (24)

In the large N limit it follows that

ln Q(y) = −tr ln (1− yU) + κΘ(y − 1) ln w . (25)

In the physical problem of interest y = e−β(E−µ). The
second term in (25) is thus nonzero only for states with
E < µ. Such states exist only if cB < µ. Adding up the
contribution of all such states (accounting for the density of
states) reproduces the extra term in (11) with all factors.
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The Bosonic Exclusion Principle

We have learnt something important here. In large N
matter Chern Simons theories, no single particle bosonic
state can be occupied more than kB times. We call this the
‘Bosonic Exclusion Principle’. It is the direct level rank dual
of a more obvious result for fermionic theories, namely that
no single particle fermionic state can be occupied more
than NF .
Recall that ordinary free boson theories are ill defined at
values of the chemical potential greater than the mass, as
all states with energies between the mass and the
chemical potential are infinitely occupied in such theories.
The bosonic exclusion principle cures this singualrity in
matter Chern Simons theories, rendering Bosonic theories
with chemical potential larger than the mass well defined.
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Large Volume Limit

Let us recap. We have discovered that IF and IB, are
simply the partition functions over the free Fermion/ Free
Boson Fock spaces, subject to the WZW singlet condition.
The Bosonic exclusion principle follows from this statemet.
The WZW singlet condition is an effective interaction
between distinct single particle states. As a consequence
the final results for IF and IB are not free, i.e. the final
partition function does not, in general, reduce to a product
of partition functions, one for each single particle state.
Recall, however, that IF and IB depend on a parameter, the
volume of the S2, or more precisely α = V2T 2

N . It is
interesting to study IF and IB in the large α limit. In what
follows we perform this study at finite N and k , not
necessarily in the ’t Hooft large N limit, as we expect IB
and IF to accurately capture the partition function of Chern
Simons matter theories in low density limits (T � m) even
at finite N and k .
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‘Saddle Point’ at large Volume

At finite N and k IB is given by the formula (23) (IF is given
by a similar formula). The key simplification of the large
volume limit is that the summation over choices of
eigenvalues in that formula is dominated by a single
eigenvalue configuration (this is a sort of saddle point
approximation for the summation in that formula).
The eigenvalue configuration that dominates the sum is

wi = ei(αi ),

{αi} =
2π
κ

{
− N − 1

2
,−N − 3

2
,−N − 5

2
, . . .

N − 5
2

,
N − 3

2
,

N − 1
2

}
(26)

This configuration is the correct ‘saddle point’ for all cases;
the SU(N), Type II and Type I theories and for fermions
and bosons.
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Factorization at large volume

At general values of the volume, the formula (23)
expresses the partition function as a sum over products.
As we have explained, at large volume the sum local to a
single term, leaving us with a simple product, one term for
each single particle state.

IB ∝
∏

a

Z a
B Z̄ a

B , Z a
B =

( NB∏
i=1

1
1− e−β(Ea−µ)wi

)∣∣∣∣
kB

,

Z̄ a
B =

( NB∏
i=1

1
1− e−β(Ea+µ)wi

)∣∣∣∣
kB

,

(27)

(the eigenvalues that apear in (27) are those listed on the
previous slide)

Z a
B =

kB∑
r=0

χS
n (U) e−rβ(Ea−µ) =

kB∑
r=0

dS
n e−rβ(Ea−µ) (28)
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q numbers and quantum dimensions

dS
n is the so called quantum dimenison of the n box

symmetric representation. As mentioned above it equals
the character of this representation evaluated on our
special ‘saddle point’ unitary matrix. Explicitly

dS
n =

(
n
m

)
q

=
[n]q!

[m]q![n −m]q!

[m]q! = [1]q[2]q · · · [m]q

[r ]q =
qr/2 − q−r/2

q1/2 − q−1/2

(29)

with
q = e

2πi
κ

Similar expressions hold for fermions. Using identities
involving q factorials, the bosonic and fermionic
expressions can be shown to be level rank dual.
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Product but not Free

Ignoring details, for the moment, an immediately striking
aspect of the large volume limit is that the partition
factorizes (its a product of partition functions, one for each
single particle state).
This feature may appear to suggest that our system is free
in the infinite volume limit (whats going on in one single
particle state does not affect the partition function of
another single particle state).
While this suggestion sounds initially reasonable, it is not
correct. We can see this by noting that the coefficients of
e−β(En−µ) in the expansion of Zn above are not integers. It
follows that the different Zn are not partition functions over
independently defined Hilbert Spaces.
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Explanation of the Product Structure

We believe that this product structure is a manifestation of
an interesting universality in the fusion rule algebra in the
large insertion limit.
Consider any generic collection of integrable
representations of the WZW algebra R1 . . .Rn.
Let us now sequentially fuse our representations with each
other. Once this process is completed let us suppose we
are left with nRi representations of type Ri for each
integrable representation Ri .
In the limit that n is the largest number in the problem, we
believe that

nRi

nRj

=
dRi

dRj

Independent of the details of the participating
representations Ri .
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Explanation of factorization

This univerality explains the factorization of our partition
functions as follows
The coefficient of e−nβ(En−µ) in Zn is actually proportional
to the number of sea particles in the representation
conjugate to the n box symmetric representation.
The conjecture of the previous slide explains why this
number is independent of the precise state of the ‘sea’,
explaining why the product structure of single particle
The universality described in our conjecture is tightly
connected to the fact that the unitary matrix U localizes on
the same universal matrix in the V2 →∞ limit, independent
of the temperature, chemical potential and masses
together with the fact that dR = χR(U).
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Implications of Factorization

Recall that

Z a
B =

kB∑
m=0

(
NB

m

)
q

e−rβ(Ea−µ) (30)

In the limit λB → 0 q → 1 and(
NB

m

)
q
→
(

NB

m

)
Also in this limit kB so the upper limit on the summation in
(30)→∞. We thus reproduce usual Bose statistics.
(30) can be thought of as a one parameter deformation of
usual Bose thermal ‘statistics’; one that changes the
details of occupation probabilities at low occupation
numbers, and imposes the Bose Exclusion Principle at
high occupation numbers.
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New Single particle Thermal Statistics

As a consequence we obtain a one parameter deformation
of many of the familiar rules of free statistical physics that
we learn about as undergraduates.
For instance, in the t’Hooft Large N limit we find the
following formula for the average occupation number of any
given single particle state at temperature T and chemical
potential µ

n̄B(ε, µ)

=
1− |λB|

2|λB|
− 1
π|λB|

tan−1
(

eβ(ε−qµ) − 1
eβ(ε−qµ) + 1

cot
π|λB|

2

)
,

Generalizing the familiar free boson result

n̄B(ε, µ) =
1

eβ(ε−qµ) − 1

Similar results apply for fermions and respect duality
Shiraz Minwalla



Step 2

We now have a thorough understanding of the physical
meaning of Step 1. I now give a brief account of step 2.
Step 2 captures the effet of contact interactions between
our effectively free particles. In the large N limit only
forward scattering effect contribute to thermodynamics
The most imortant qualitative effect of Step 2 is that it
determines the thermal mass of scattering particles as a
function of T and µ (this comes from extremizing over ĉB.
A second effect is that it renormalizes the energy of the
multiparticle state away from the sum of energies of single
particle in a well understood and algorithmic way.
Not that interactions captrued by Step 2 do not either
cause particles to decay or modify Step 1 occupation
number statistics (the last follows because all µ
dependence is captured in step 1). Most step 2 is
qualitatively similar at all values of λB including zero, and
applies also to the large N O(N) model.
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Conclusions and future directions

We have demonstrated that the partition function of Large
N matter Chern Simons theories is effectively that of a free
fock space, constrained to the subspace of WZW singlets,
and then renormalized by forward scattering interactions in
a mean field like way
It would be intersting to move this understanding away
from the large N limit and also from the large volume limit.
It would be fanctastic if we could rewrite the Index of
superconformal Chern Simons matter theories in a
language similar to this talk (i.e. free theory subject to an
effective constraint).
It would be interesting if the new ‘free thermal statistics’ of
this talk showed up in a real two dimensional material.
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Discussion

The Bose condensate encountered in our analysis is an
extremely simple stabilization of the run away instability of
free theory. The sharp cut off at kF plus the Bose exclusion
principle gives this phase all the properties of a Fermi Sea.
It would be interesting to investigate the dynamical
implications of the Bose condensation principle. Cut off
lasers?
It would be interesting to better understand how the path
integral ‘knows’ that mixed ‘correlators’ of non integrable
and integrable Wilson lines must vanish, even in the case
of pure Chern Simons theory (see remark in red before
(14)). It would also be satisfying to reproduce the phase
(−1)N+1 in (18) directly from the Blau and Thompson path
integral.
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