On global anomalies of heterotic string theories

Yuji Tachikawa (Kavli IPMU)

Strings 2021, São Paulo

June 29, 2021

Introduction

String theorists often say

String theory is miraculously free of inconsistency

and when they feel particularly arrogant say

String theory is the only consistent theory of quantum gravity

Are you really sure?

Really?

For example, take Witten's SU(2) anomaly.

In 4d, there is a nontrivial large gauge transformation associated to

 $\pi_4(SU(2))=\mathbb{Z}_2.$

If you have N doublet Weyl fermions, this produces a phase

 $(-1)^{N}$.

The theory is inconsistent if N is odd.

Let us now ask:

Is Witten's SU(2) anomaly absent in 4d heterotic compactifications?

Somewhat surprisingly, this rather fundamental question is still open!

I learned this question from my colleagues in IPMU during the teatime slightly before the pandemic.

They studied this question assuming that there are 4d $\mathcal{N}=2$ spacetime SUSY.

They showed that the anomaly vanishes in many cases, but they didn't find a universal proof either. [Enoki-Sato-Watari 2005.01069]

(Texts in purple is hyperlinked if you download the slides.)

Due to a technical reason, I discuss a related but slightly different global anomaly:

a \mathbb{Z}_{24} global anomaly in 2d heterotic compactifications.

The aim of this talk is to show that it vanishes.

We need to use the mathematical theory of **topological modular forms** and the associated **Segal-Stolz-Teichner conjecture**.

Let me start.

Perturbative heterotic strings

Let us consider heterotic compactification to spacetime dimension d.

The worldsheet theory consists of

	c_L	c_R
(super)ghosts	-26	-15
$X^{0,,d-1},ar{\psi}^{0,,d-1}$	d	$rac{3}{2}d$
internal CFT	26-d	$15-rac{3}{2}d$

In particular, when d = 10, the internal CFT should have

 $(c_L, c_R) = (16, 0).$

There are only two choices: SO(32) and $E_8 \times E_8$. In both cases, the **perturbative anomaly cancels**.

[Green-Schwarz (1984)].

It then follows that it also cancels automatically for arbitrary smooth **geometric compactifications**.

But there can be **non-geometric compactifications**.

It is known that **perturbative anomaly always cancels** irrespective of whether the internal CFT is semi-classical or not. [Lerche-Nilsson-Schellekens-Warner (1988)] What about the global anomalies?

In 10d $E_8 \times E_8$, it was shown to vanish in Witten's "Topological tools in ten dimensions" (1986).

This implies that it also vanishes in all smooth geometric compactifications of $E_8 \times E_8$ heterotic strings.

But there can be non-geometric compatifications, where the internal CFT does not come from classical geometry.

A global anomaly in 2d

To be concrete, let us consider compactifications to 2d.

The internal CFT has

 $(c_L, c_R) = (24, 12).$

Massless fermions in the spacetime theory ↔ R-sector vacuum states of the internal CFT

Spacetime chirality $\leftrightarrow (-1)^{F_R}$ of the internal CFT

 \Rightarrow The elliptic genus of the internal CFT encodes the fermion anomaly.

The elliptic genus of the internal CFT is

$$egin{aligned} Z_{ ext{ell}}(q) &= ext{tr}_R(-1)^{F_R} q^{L_0 - c_L/24} \ &= a q^{-1} + b + O(q^1) \end{aligned}$$

where

$$a = N_{\text{gravitino}}^+ - N_{\text{gravitino}}^-, \qquad b = N_{1/2}^+ - N_{1/2}^-.$$

The total fermion anomaly polynomial of the spacetime theory is

$$I_4 = \left(-24a + b\right)\left(-\frac{p_1}{48}\right)$$

where $p_1 = \frac{1}{2} \operatorname{tr}(\frac{R}{2\pi})^2$.

String one-loop perturbation theory automatically generates the *B*-field one point function

$$2\pi iN\int B$$

 $N=rac{1}{8\pi}\int_{ ext{fund.reg.}}Z_{ ext{ell}}(q)d\mu=-a+rac{b}{24}.$ [Vafa-Witten hep-th/9505053] [Sen hep-th/9604070]

r

where

Note also that

$$H = dB + CS(\omega)$$

therefore $\int B$ has the same anomalous variation as $I_4=rac{p_1}{2}.$

Summarizing, when the elliptic genus of the internal CFT is

$$Z_{\text{ell}}(q) = aq^{-1} + b + O(q^1),$$

the fermion anomaly is

$$I_4 = (-24a + b)(-\frac{p_1}{48})$$

while the **B**-field coupling is

$$2\pi i(-a+rac{b}{24})\int B.$$

Since $\int B$ has the same anomalous variation as $I_4 = \frac{p_1}{2}$, the two contributions to the perturbative anomaly cancel out.

This is the Green-Schwarz mechanism in 2d.

The **B**-field coupling

$$2\pi i(-a+rac{b}{24})\int B$$

still poses a problem when $b/24 \notin \mathbb{Z}$, since it transforms nontrivially under the large gauge transformation

 $B \rightarrow B + 1.$

As *b* is naturally an integer, this is a \mathbb{Z}_{24} global anomaly.

The central question can now be formulated as follows:

Take an $\mathcal{N} = (0, 1)$ SCFT with $(c_L, c_R) = (24, 12)$.

Let's say its elliptic genus is $Z_{ell} = aq^{-1} + b + O(q^1)$.

Is b always divisible by 24?

This is not a string theory / quantum gravity question.

It is rather a 2d CFT question, a quite peculiar one.

You can go over various 2d compactifications studied in

[Sen hep-th/9604070],

[Font, López hep-th/0405151],

[Florakis, Garcia-Etxebarria, Lust, Regalado 1712.04318].

In all cases, *b* is divisible by 24.

How do we show this in general?

Let us first use the theory of modular forms.

Modular forms

Take a 2d $\mathcal{N} = (0, 1)$ theory *T*. Its elliptic genus is

 $Z_{\mathrm{ell}}(T;q) = \mathrm{tr}_R(-1)^{F_R} q^{L_0-c/24},$

which is the partition function of the theory on T^2 with the periodic spin structure.

Therefore, $Z_{\text{ell}}(T; q)$ is modular invariant, up to subtle phases given by 24-th roots of unity dictated by the gravitational anomaly $c_R - c_L \neq 0$.

Given a 2d $\mathcal{N}=(0,1)$ theory *T* with $2(c_R - c_L) = \nu$, let us **add** ν **left-moving fermions**, to cancel this worldsheet anomaly.

What we have is then

$$\phi_W(T;q) := \eta(q)^{
u} Z_{ ext{ell}}(T;q)$$

where

$$\eta(q) = q^{1/24} \prod_n (1-q^n).$$

is the fermion contribution. We now have

$$\phi_W(T; \frac{a\tau + b}{c\tau + d}) = (c\tau + d)^{\nu/2} \phi_W(T; \tau).$$

This transformation law defines a modular form of weight $\nu/2$.

(Mathematicians call ϕ_W the Witten genus.)

Let us come back to heterotic compactifications to 2d.

Since $\nu = 2(c_R - c_L) = -24$, we consider

 $\phi_W(T;q) = \eta(q)^{-24} Z_{\text{ell}}(T;q) = \eta(q)^{-24} (aq^{-1} + b + \cdots).$

This is a modular form of weight -12with integer coefficients and poles of order at most 2. From this we conclude

$$\phi_W(T;q) = aE_4^3\Delta^{-2} + (-744a + b)\Delta^{-1}$$

where

$$E_4 = rac{45}{\pi^4} \sum_{(n,m)
eq 0} rac{1}{(n au+m)^4} = 1 + 240q + \cdots$$

and

 $\Delta = \eta(q)^{24}.$

The theory of modular forms allow us to determine the entire elliptic genus from *a* and *b*, but **it does not tell that** *b* **is divisible by 24.**

Topological modular forms come to the rescue.

Topological modular forms

The ring of **topological modular forms** generalizes and refines the ring of modular forms.

It was mathematically constructed by Hopkins et al. around 2000, using an amalgam of algebraic topology and algebraic geometry.

[Hopkins math.AT/0212397]

The Segal-Stolz-Teichner conjecture says

$$\mathbf{TMF}_{\nu} = \frac{\left\{\begin{array}{c} 2d \,\mathcal{N}=(0,1) \text{ supersymmetric theory} \\ \text{with } \nu = 2(c_R - c_L) \end{array}\right\}}{\text{continuous deformation}}$$

[Segal 1988] [Stolz-Teichner 2002] [Stolz-Teichner 1108.0189]

A \mathcal{N} =(0, 1) SCFT T with 2 $(c_R - c_L) = \nu$ should then determine an element

 $[T] \in \mathrm{TMF}_{\nu}.$

Why is this conjecture plausible?

Mathematicians constructed a map ϕ_W , which for us extracts the elliptic genus

Mathematicians also know how to describe the sigma models:

$$\left(egin{array}{cc} M: & {
u} ext{-dim'l manifold} \ B: & B ext{-field on } M \end{array}
ight)\mapsto [\sigma(M_{
u},B)]\in \mathrm{TMF}_{
u}$$

Mathematicians showed that

$$\phi_W([\sigma(M_
u,B)]) = \eta(q)^
u \underbrace{Z_{ ext{ell}}(\sigma(M_
u,B);q)}_{ ext{physicists know this part!}}$$

The image of the map

$$\phi_{W}: \mathbf{TMF}_{\nu} \rightarrow \left\{ \begin{array}{c} \text{modular forms of} \\ \text{weight } \frac{\nu}{2} \text{ with} \\ \text{integer coeff.s and poles} \end{array} \right\}$$

has been mathematically determined.

In particular,

 $d\Delta^k$ is in the image of ϕ_W iff d is a multiple of $\frac{24}{\operatorname{gcd}(24,k)}$.

We can finally come back to our question

Take an $\mathcal{N} = (0, 1)$ SCFT with $(c_L, c_R) = (24, 12)$.

Let's say its elliptic genus is $Z_{ell} = aq^{-1} + b + O(q^1)$.

Is b always divisible by 24?

Recall that otherwise heterotic compactifications to 2d has a \mathbb{Z}_{24} global anomaly.

We already argued that

$$\phi_W(T;q) = \frac{aE_4^3\Delta^{-2} + (-744a + b)\Delta^{-1}}{a + b}$$

and recall

 $d\Delta^k$ is in the image of ϕ_W iff d is a multiple of $rac{24}{\gcd(24,k)}$.

Taking k = -1, we find that -744a + b is a multiple of

$$rac{24}{ ext{gcd}(24,-1)} = 24.$$

So *b* is divisible by **24**. **Done.**

How about Witten's SU(2) anomaly?

More generally, the question of global anomaly of heterotic compactifications down to d dimensions with gauge symmetry G can be translated to the study of

 $\mathrm{TMF}_{-22-d}(BG)_k$

where k is the level of the current algebra.

They are very hard to compute.

But **there is a way** to show that global anomaly always vanishes, by **considering all cases at once**, **without doing any case-by-case analyses**.

[Work in progress with Yamashita, a mathematician in Kyoto]

Comments

Clearly we are not really done.

We simply transferred

the question of global anomalies of heterotic strings

to

the validity of the Segal-Stolz-Teichner conjecture

 $\mathbf{TMF}_{\nu} = \frac{\left\{\begin{array}{c} 2d \,\mathcal{N}=(0,1) \text{ supersymmetric theory} \\ \text{with } \nu = 2(c_R - c_L) \end{array}\right\}}{\text{continuous deformation}}$

It is important to test the conjecture in our own way.

There are a couple of works:

[Gaiotto, Johnson-Freyd 1811.00589] [Gaiotto, Johnson-Freyd, Witten 1902.10249] [Gaiotto, Johnson-Freyd 1904.05788]

Let me add one implication of the conjecture.

As I said, the image of the map

$$\phi_{W}: \mathbf{TMF}_{\nu} \rightarrow \left\{ \begin{array}{c} \text{modular forms of} \\ \text{weight } \frac{\nu}{2} \text{ with} \\ \text{integer coeff.s and poles} \end{array} \right\}$$

has been mathematically determined.

In particular,

 $d\Delta^k$ is in the image of ϕ_W iff d is a multiple of $\frac{24}{\operatorname{gcd}(24,k)}$.

One consequence is this:

If the elliptic genus of $2d \mathcal{N} = (0, 1)$ theory is simply 1, then $c_L - c_R$ is divisible by 288.

Conversely, there should be a 2d $\mathcal{N}=(0,1)$ theory whose elliptic genus is 1 and $c_L - c_R = \pm 288$.

That particular theory would be quite a marvelous one.

Summary

Today, I considered **global anomalies in heterotic string theories.**

Such questions can be answered using the **mathematical theory of TMF**, using the **Segal-Stolz-Teichner conjecture**:

$$\mathbf{TMF}_{\boldsymbol{\nu}} = \frac{\left\{\begin{array}{c} 2d \,\mathcal{N}=(0,1) \text{ supersymmetric theory} \\ \text{with } \boldsymbol{\nu} = 2(c_R - c_L) \end{array}\right\}}{\text{continuous deformation}}$$

This conjecture predicts **many unexplored properties of 2d theories**, which I think are worth pursuing.

The list of hep-th papers on **TMF** is not very long.

The exhaustive list is

 Gaiotto, Johnson-Freyd
 1811.00589

 Gukov, Pei, Putrov, Vafa
 1811.07884

 Gaiotto, Johnson-Freyd, Witten
 1902.10249

 Gaiotto, Johnson-Freyd
 1904.05788

 Johnson-Freyd
 2006.02922

 YT
 2103.12211

It's a young field and new comers are welcomed...