
D-instanton Contributions to String
Amplitudes

Ashoke Sen

Harish-Chandra Research Institute, Allahabad, India

Sao Paolo, June 2021

1



Motivation
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1. String perturbation theory can in principle generate
perturbative contribution to string amplitudes to any given order
in string coupling

– resummation can give the contribution from path integral over
the steepest descent contour / Lefschetz thimble associated
with the perturbative saddle point.

A similar analysis for other saddle points could generate the
contribution from the Lefschetz thimbles associated with these
saddle points.

If we could do this for every saddle point then by taking the
appropriate weighted union of these contributions we may be
able to get the full non-perturbative amplitudes (in principle).

Our goal will be to understand the perturbative contribution from
a class of saddle points – D-instantons or more generally
Euclidean D-branes wrapped on compact cycles. 3



2. D-instanton contributions play an important role in studying
many aspects of string phenomenology

– moduli stabilizations via KKLT or LVS

– computation of Yukawa couplings and gauge field kinetic
terms
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However before we get into these computations we should test
the procedure on examples where the results are known from
various conjectured duality relations

– two dimensional string theory (discussed earlier)
Balthazar, Rodriguez, Yin; A.S.

– ten dimensional type IIB string theory (this talk)

– type IIA/IIB string theory compactified on Calabi-Yau manifolds
(work in progress) Alexandrov, A.S., Stefansky
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The issues
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The dynamics of D-instantons (including euclidean D-branes on
compact cycles) is described by open strings with ends stuck on
the D-instanton

– do not carry continuous momenta.

Therefore the infrared divergences associated with the zero
modes cannot be treated by analytic continuation.

In the world-sheet description these divergences show up as
divergences from the boundaries of the moduli spaces of
Riemann surfaces associated with open string degeneration.
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Strategy:

1. Represent the world-sheet contribution as coming from sum
over Feynman diagrams of string field theory (SFT)

2. Explicitly remove the zero mode contribution from the internal
propagators

3. Carry out the integral over the zero modes at the end

– generates unambiguous, divergence free results

However computing the overall normalization, associated with
one loop determinant of the open string fields in the instanton
background, requires a somewhat different approach

– subject of this talk. 8



We shall illustrate this procedure for a particular class of
problems

– D-instanton contribution to IIB string theory amplitudes in 10
dimensions.

However the method is quite general and applies to any
euclidean D-brane in any string theory. 9



The problem
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Consider four graviton scattering amplitude in type IIB string
theory.

At tree level, it is given by the supergravity result and an
additional R4 contact interaction: Gross, Witten

i
4
κ2 Kc

[
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stu

+ 2ζ(3)
]
(2π)10 δ(10)(p1 + p2 + p3 + p4)

in α′ = 1 unit.
κ2 ≡ 8πG = 26π7g2

s

gs: string coupling, normalized so that the D-string tension is
1/(2πgs).

Kc: A kinematic factor that depends on the polarizations and
momenta of the external gravitons (carries 8 powers of
momentum). 11
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The supergravity contribution, given by the first term, is
S-duality invariant.

The second term is not, but there is an S-duality invariant
completion containing one loop and non-perturbative terms.

Green, Gutperle
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τ = a + i/gs, a: vev of RR scalar field

e2πikτ : k D-instanton contribution,

e−2πikτ∗ : k anti-D-instanton contribution

O(gs) contains higher powers of gs 12



This gives the following prediction for the leading term in the k
D-instanton contribution to the four graviton amplitude:

i 26π8 g7/2
s e2πika e−2πk/gs Kc k1/2

∑
d|k

d−2

Our goal: Reproduce this from direct D-instanton computation.

Once this is done, all the higher order terms in power series
expansion in gs can be obtained using the differential equation
implied by supersymmetry Green, Sethi; Green, Vanhove; · · · , Wang, Yin

– determines the function completely without help of S-duality

Nevertheless it is important to develop techniques for evaluating
the higher order terms by direct perturbative computation

– work in progress by ABCRY who also determined the gs

dependence for k=1 earlier. Agmon, Balthazar, Cho, Rodriguez, Yin
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i 26π8 g7/2
s e2πika e−2πk/gs Kc k1/2

∑
d|k

d−2

The e2πika e−2πk/gs comes from exponential of the action of k
instantons.

We shall not discuss these any further.

Our goal: Reproduce the 26π8 g7/2
s Kc k1/2∑

d|k d−2 factor.
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Single instanton
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The leading contribution comes from the product of four disk
one point functions and arbitrary number of annulus zero point
functions.

mexp
[ ]

i × × × ×

Define N = i exp[A], A: Annulus zero point function

Our first task will be to calculate N.

At this order, all the subtleties reside in the calculation of N.

Note: we include disconnected world-sheet since individual
world-sheets do not conserve momentum

– restored at the end after integration over zero modes 16



N = i eA

For type IIB D-instantons:

A =

∫ ∞
0

dt
2t

[
1
2
η(it)−12 {ϑ3(0, it)4 − ϑ4(0, it)4 − ϑ2(0, it)4 + ϑ1(0, it)4}]

ϑα are Jacobi theta functions.

A = 0 by theta function identity

– result of cancellation between NS and R sector open string
states.

The first two terms come from NS sector and the last two terms
come from the R sector.
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The general structure of A:

A =

∫ ∞
0

dt
2t

Tr
[
e−2πtL0(−1)F]

The vanishing of A shows that the contribution from the positive
L0 states cancel in Bose-Fermi pair.

For these there are no subtleties and the cancellation is genuine.

However the cencellation cannot be trusted for the zero modes
and we need to treat them carefully.

For this it will be useful to regulate the system by introducing a
small non-zero L0 value h for the zero modes at the intermediate
steps

– put slightly shifted boundary condition on the two boundaries

– preserves conformal and BRST invariance on the world-sheet
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In this regulated system

A =

∫ ∞
0

dt
2t
(
8 e−2πth − 8 e−2πth) = ∫ ∞

0

dt
2t
(
10 e−2πth − 2 e−2πth − 8 e−2πth)

↓ absence of UV divergence as t→ 0

⇒ N = i eA = i

√
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h10 = i
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9∏
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dξµ√
2π

 dp dq exp

−1
2

h
9∑

µ=0

ξµξ
µ − h p q


∫ 16∏

α=1

dχα exp
[

1
2

gαβχαχβ
]

ξµ: 10 grassmann even modes related to D-instanton position

p,q: 2 grassmann odd modes representing ghosts

χα: 16 grassmann odd modes representing fermion zero modes

gαβ: an anti-symmetric, 16× 16 hermitian matrix satisfying:

g2 = h I16 , I16: 16× 16 identity matrix
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We now proceed as follows.

1. First we interpret N as the Siegel gauge fixed path integral of
open string field theory on the instanton

– fixes the normalization of the integration measure.

2. In this interpretation, the modes p and q represent
Faddeev-Popov ghosts in the NS sector.

3. Then we show that the Siegel gauge becomes singular in the
h→ 0 limit, and this is the reason why the coefficient of the p q
term, representing the ghost kinetic operator, vanishes.

4. The remedy is to work with the original gauge invariant path
integral before gauge fixing.

This gets rid of the zero modes p and q from the integral. 20



Final result (after setting h=0)

N = i
∫ {∏

µ

dξµ√
2π

}{∏
α

dχα

}
dφe−φ

2/4

/∫
dθ

φ: The mode wrongly fixed to 0 in the Siegel gauge

θ: The gauge transformation parameter used for the wrong
gauge fixing

We can now do the φ integral and write:

N = i (2π)−5 2
√
π

∫ {∏
µ

dξµ
}{∏

α

dχα

}/∫
dθ
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ξµ’s are related to the location xµ of the instanton in space-time.

Precise relation may be found by comparing

– the explicit coupling of ξµ to a string amplitude from
world-sheet computation, and

– the expected coupling of xµ via eip.x factor

Result:

ξµ = xµ/(go π
√

2) ⇒
∏
µ

dξµ = (π
√

2go)
−10

∏
µ

dxµ

go: open string coupling = 2−1π−3/2g1/2
s
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The gauge transformation parameter θ is related to the rigid U(1)
gauge transformation parameter α on the D-instanton.

If we take an open string connecting the D-instanton to a
neighboring instanton, this state picks up a phase eiα.

Compare the infinitesimal transformation by α to the string field
theory gauge transformation generated by θ.

This gives:

θ = 2α/go ⇒
∫

dθ = (2/go)

∫
dα = 4π/go

since α has period 2π.
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N = i (2π)−5 2
√
π (π
√

2go)
−10 go/(4π)

∫ {∏
µ

dxµ
}{∏

α

dχα

}
Integrations over the collective modes xµ and χα have to be
done at the end after computing the full amplitude, since the
other world-sheet components also have xµ and χα dependence.

xµ integral eventually generates the (2π)10δ(10)(
∑

j pj) factor.

Integration over the grassmann odd variables χα will vanish
unless there are 16 insertions of χα in the rest of the amplitude.

Only non-vanishing contribution comes from inserting 4 fermion
zero modes on each of the four disks

The χα integrals generate a factor of εα1···α16 multiplying the
product of the four disk amplitudes with χα1 , · · · , χα16 insertions.

– precisely reproduces Green-Gutperle prediction for k=1 24
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k-instantons
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The center of mass degrees freedom give the same integral as a
single instanton except for some powers of k from Chan-Paton
factors

The relative degrees of freedom have to be analyzed similarly by
gauge ‘unfixing’ the Siegel gauge and explicitly integrating over
the out of Siegel gauge modes.

The remaining part is a supersymmetric matrix integral which
had already been computed while studying the index of multiple
D0-branes Krauth, Nicolai, Staudacher; Moore, Nekrasov, Shatashvili

Putting these results together we reproduce precisely the
leading term in the k-instanton amplitude as predicted by Green
and Gutperle.
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Conclusion
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String (field) theory gives a systematic procedure for computing
D-instanton contribution to the amplitudes.

We should be able to apply this procedure to calculate
D-instanton contribution in situations where S-duality may not
be of help

e.g. semi-realistic string compactifications · · ·

· · · and other problems where D-instanton corrections might
play a dominant role.
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