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Central problem in theoretical cosmology: understand
accelerated expansion of the universe.

Need to formulate quantum gravity in cosmological
space-times.

Our approach to this problem, in 2 steps:

|. construct dS/cosmo solutions in string/M theory
2. understand them as deformations of AdS/CFT

By uplifting AdS/CFT from negative to positive c.c., this would
give a holographic formulation of cosmology.

Goal of this talk: present a new simple mechanism to obtain de
Sitter solutions in M-theory.
This uses crucially hyperbolic manifolds and Casimir energy.

Based on arXiv:2104.13380 w/De Luca and Silverstein

See Baumann/Silverstein, Kachru/Quevedo, ... for other constructions and results



A. Overview of the framework
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In string/M-theory we look for sols of the form
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obtained by solving D=d+n dim EOM:s.
Useful intuition comes from dimensionally reduced effective
potential
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d-dim scalar fields descending e.g. from metric modes on Bn
should be stabilized.



¢ AdS/CFT energetics

Let’s summarize how AdS/CFT works from this perspective
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v Internal space of negative curvature
v Negative energy for the intermediate term in the potential
v May need other ingredients in place to stabilize all light fields

... can lead to metastable de Sitter solutions

Concrete brane construction for d.S3 given in Dong, Horn, 5 .xjv:1005.5403
Silverstein, GT

We will present dS4 sols with minimal ingredients



B. Setup and stabilization mechanism

We consider | |d SUGRA/M-theory

= compactified on finite volume hyperbolic manifold H /T

= negative Casimir energy from small circles (antiperiodic boundary
conditions for fermions)

= N units of F/ flux (M2 branes)

Finite volume hyperbolic manifold obtained from Hi~;
dz? 4 dy?
dsz; = (7 >
by modding out by freely acting discrete subgroup I' C SO(1,n)

v Mostow rigidity: hyperbolic structure is uniquely fixed by 7 (B)

All metric fluctuations (except for conformal mode) are gapped!



¢ Casimir energy

Source of negative energy: we use hyperbolic manifolds with small
cycles.We put antiperiodic boundary conditions for fermions, so
Casimir energy is net negative due to bosons.

® Hyperbolic manifolds can contain near-cusps. Described by
ds? dy* + 6_2y/€d8%6 ;Yo <Y < Ye

cusp

Joined to the bulk part at yo . Radial direction should be stopped at
finite Y. to get compact space. Achieved via Anderson/Dehn filling.
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® |n this situation, the Casimir energy becomes
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and semi-classical EOMs — <T$§S)>

- Casimir strongly localized near thin regions.Will need to include
backreaction.

- This quantum effect will have to be large enough to compete
with classical sources.Will use a combination of small cycles and
warping.

- At the same time, other quantum corrections are suppressed if
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¢ Homogeneous potential

Stabilization mechanism in homogeneous approx.
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C. Inhomogeneities and backreaction

Casimir contributions localized in thin regions. Need to determine the
effect of these inhomogeneities.
The metric will be deformed to a warped product
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/ N
warp factor u(y) = ¢2*%)  conformal mode

EOMs will be PDEs in 7 variables; possible numerical approach using
NNs described at the end.

Here instead we combine analytic estimates with numerical
approximations in the cusp region.



€ Warped effective potential [Douglas, 2009]

In the 4d EFT, it is useful to organize | |d EOMs in terms of an off-shell
effective potential that includes warping effects:
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General properties can be established using warped Veff:

e a < 1 tuning, from /(_qum — 3(Vu)?)
* Naive conformal factor instability stabilized by warping [Douglas, 2009]

* Bound on negative energy, since u decays in classically forbidden
region

* Positive contribution to mass matrix from warp factor



¢ de Sitter solution in near-cusp region

Casimir energy concentrates inhomogeneously in near-cusp regions.
Focus on one of these regions, keeping only radial y-dependence. Angular
variations become important when we glue onto the bulk.
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We find numerical smooth solutions with dS4:
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¢ Matching onto the bulk Anderson filling

Previous approx. cusp joined to the bulk of the
hyperbolic manifold at a totally geodesic face of
polygon. Boundary conditions involve angular
variables and more intense numerics.

vanishing extrinsic curvature

Promising direction: use neural network methods to approximate
PDE sol, flowing down a loss function Loss = Z(eqs)2

Preliminary results in Hz/T
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® Current analytic estimates and general constraints suggest a positive
mass matrix



D. Discussion & other directions

We have found a simple mechanism for obtaining dS sols in M-theory:
uplift of the large N M2 brane theory using negative curvature and
automatically generated Casimir energy.

* We gave arguments for the existence of sol’s beyond the
homogeneous level. Explicit sol’s will require solving PDEs but seems
doable.

* Holography: the uplifts provide a microscopic realization of dS/dS
correspondence. Combines with recent progress on T Tbar-type
deformations in field theory. Add matter fields & uplift.

* Can also look for more general cosmological solutions w/accelerated
expansion (slow-roll functionals in the landscape)

Thanks!



