On the Quantum Advantage of SYK

And Operator Spreading on Networks

Jeff Murugan

With: Dario Rosa, Matteo Carrega, Joonho Kim & Jan Olle

Based on: 2107.xxxxx, 1912.07247, 1901.04561

Strings 2021, São Paulo, Brazil

WHY SYK?

[Sachdev-Ye'92, Kitaev'15, Maldacena-Stanford'16 + Loads of other people]

WHY SYK?

[Sachdev-Ye'92, Kitaev'15, Maldacena-Stanford'16 + Loads of other people]

WHY BATTERIES?

Quantum batteries 101

A quantum battery is a d-dimensional quantum system with non-degenerate energy levels from which energy can be reversibly extracted, or deposited into, by cyclic unitary operations.

lacktriangle A **solution** of the von Neumann equation is given by $ho(t) = U(t)
ho U^\dagger(t)$ with

$$U(t) = \operatorname{Texp}\left(-i\int_0^s ds H(s)\right)$$

- The work extracted after time τ is $W(\tau) = {\rm Tr}\,(\rho H_0) {\rm Tr}\,(\rho(\tau)H_0)$
- Ergotropy is the maximum amount of extractable work optimized over all unitary operations

[Alicki-Fannes '13, Binder et.al. '15]

◆ A d-level battery:

$$H_0 = \sum_{j=1}^{d} \varepsilon_j |j\rangle\langle j|$$

Energy is extracted through the quench protocol

$$H(t) = H_0 + V(t)$$

The system evolves according to the von

Neumann equation

$$\dot{\rho}(t) = -i[H(t), \rho(t)]$$

$$\rho(0) = \rho$$

Some properties of batteries

- ◆ A passive state is on from which no more work can be extracted.
- ullet σ is a passive state iff ${
 m Tr}\,(\sigma H_0) \leq {
 m Tr}\,(U\sigma U^\dagger H_0)$ for all unitaries.
- \bullet Any state ρ possesses a unique passive state for which

$$W_{\text{max}} = \text{Tr} \left(\rho H_0\right) - \text{Tr} \left(\sigma_{\rho} H_0\right)$$

and obtained by a **unitary**operation that rearranges the eigenvalues of ρ in non-increasing order.

[Alicki-Fannes '13, Binder et.al. '15]

- ◆ All thermal states are passive and, for d=2, all passive states are thermal.
- The product of passive states is not necessarily a passive state
- ullet A completely passive state satisfies $\otimes^n \sigma_{
 ho} = \sigma_{\otimes^n
 ho}$
- A state is completely passive iff it is thermal
- * Ergotropy is bounded, since

$$W_{\text{max}} \le \operatorname{tr}(\rho H_0) - \operatorname{tr}(\omega_{\bar{\beta}} H_0)$$

where $\omega_{eta}=\exp\left(-eta H_0
ight)/\mathcal{Z}$ is a canonical Gibbs state.

ullet must be dialled so that the von Neumann entropy $S(
ho) = -{
m tr}\,(
ho \ln
ho) = S(\omega_{ar{eta}})$

Ensembles of batteries

Now let's build a battery out of an ensemble of N d-dimensional unit cells with global Hamiltonian

$$H_0^{(N)} = \sum_{i=1}^{N} H_{0,i}$$

- Can additional work be extracted from the product state until a passive state is reached?
- The passive state associated to a product is separable but requires at least 2-body unitaries
- Optimal work
 extraction can be
 attained without
 entanglement, but
 requires longer times

[Alicki-Fannes '13, Binder et.al. '15]

◆ The maximum amount of work per copy

$$w_{\max}(N) = \frac{1}{N} \left(\operatorname{tr} \left[\left(\otimes^{N} \rho - \sigma_{\otimes^{N} \rho} \right) H_{0}^{N} \right] \right)$$

• For a large ensemble the energy in the passive state $\sigma_{\otimes^N \rho}$ does not differ much from an ensemble of Gibbs states $\otimes^N \omega_{\bar{\beta}}$

$$\lim_{N \to \infty} w_{\max}(N) = \operatorname{tr}\left[\rho H_0^{(1)}\right] - \operatorname{tr}\left[\omega_{\bar{\beta}} H_0^{(1)}\right]$$

Charging quantum batteries

- ◆ For finite magnitude Hamiltonians, unitary operations require a finite time to perform.
- If a pure state $|\psi\rangle$ is evolved to $|\phi\rangle$ by the unitary U(t) generated by the time-dependent Hamiltonian H(t), this time is bounded by $\mathsf{T}(|\psi\rangle,|\phi\rangle) = \hbar \arccos |\langle\psi|\phi\rangle|/\min\{E,\Delta E\}$

The instantaneous power of some unitary charging between ρ and $\rho(t)=U(t)\rho U^{\dagger}(t)$ is

$$P(t) = \frac{d}{dt}W = -i\operatorname{tr}\left([H_0 + V(t), \rho(t)]H_0\right)$$

ullet The average power $\langle P \rangle$ is the ratio between the energy deposited on the battery and the time required to perform the unitary operation.

[Alicki-Fannes '13, Binder et.al. '15]

◆ Local driving Hamiltonian

$$H_{||}^{(N)} = c_{||} \sum_{i=1}^{N} (|1\rangle\langle d| + h.c.) \otimes_{j \neq i} \mathbf{1}_{j}$$

Global driving Hamiltonian

$$H_{\sharp}^{(N)}=c_{\sharp}^{N}\left(|E\rangle\langle G|+h.c.
ight)$$
 subject to the constraint that $||H||_{\mathrm{Op}}=E_{\mathrm{max}}>0$

The collective Hamiltonian drives $|G\rangle$ to $|E\rangle$ along the shortest path in the space of entangled states giving a power advantage N-times that of the local Hamiltonian

Entangled Batteries

- ◆ Large power → short times → large fluctuations → instabilities
- In a system of harmonic oscillators in the Gibbs state charged by unitary operations, charging precision can be optimised by using Gaussian unitary operations: pure single-mode squeezing or combinations of squeezing and displacements
- Charging power
 cannot be enhanced by
 increasing the number of
 unit cells in the battery.
- The order of the interactions (k) between unit cells is an effective resource

[Alicki-Fannes '13, Friis et.al. '17]

The advantage of using entangling operations over local ones can be parameterised by the quantum advantage $\Gamma = \langle P \rangle / \langle P_{||} \rangle$

- ullet Bounds on Γ depend on the constraints on the driving Hamiltonian.
- \bullet Constraining the **standard deviation** of the Hamiltonian gives an advantage $\Gamma \sim \sqrt{N}$ while constraining the **average energy** of H results in a quantum advantage $\Gamma \sim N$
- For a **k-local Hamiltonian** with $2 \le k < N$ and participation number at most m>1 bounds the quantum advantage $\Gamma < \gamma \left[k^2(m-1)+k\right]$

SYK Batteries

The Sachdev-Ye-Kitaev model is a quantum mechanical system of N Majorana fermions with all-to-all random q-body interactions conjectured to be dual to a nearly AdS_2 geometry.

SYK Hamiltonian

$$H_q=i^{q/2}J_{i_1...i_q}\psi_{i_1}\cdot\cdot\cdot\psi_{i_q}$$
 with Gaussian random couplings $J_{i_1...i_q}$

- Some properties:
 - ◆ It is solvable in the large N limit
 - ◆ It has an emergent lowenergy conformal symmetry
 - ◆ It is maximally chaotic

[Rosa et.al. '20, Rossini et.al. '20]

Charging protocol:

$$H(t) = H_0 + \kappa \lambda(t)(H_0 - H_1)$$

$$\lambda(t) = \begin{cases} 0 & t < 0, t > \tau \\ 1 & 0 < t < \tau \end{cases}$$

ullet Energy stored after time au

$$E(\tau) = \langle \psi(\tau) | H_0 | \psi(\tau) \rangle - \langle 0 | H_0 | 0 \rangle$$

- The stored energy:
 - ullet Grows until some model-dependent time-scale τ^*
 - lacktriangle Then fluctuates wildly about some average \overline{E}
 - ullet with a model-dependent relative size $\delta E = \Delta E/\overline{E}$

Jeff Murugan (UCT)

SYK Batteries

• To compare SYK batteries to other models, look at the **optimal** average power $P_N(\tau^*)$ where $P_N(\tau) \leq 2\sqrt{\Delta_{H_0^2}(\tau)\Delta_{H_1^2}(\tau)}$ and $\Delta_{\mathcal{O}^2}(\tau) = \frac{1}{\tau} \int_0^\tau \!\!\! d\tau \left[\langle \mathcal{O}^2 \rangle_\tau - \langle \mathcal{O} \rangle_\tau^2 \right]$. Specifically: $\Delta_{H_1^2}(\tau) \leftrightarrow \text{charging}$ speed while $\Delta_{H_0^2}(\tau) \leftrightarrow \text{distance travelled}$ in the Hilbert space.

- lacktriangle Quantum advantage \longleftrightarrow faster-than-linear scaling of $P_N(au)$ with N
- ullet Genuine quantum advantage \longleftrightarrow superlinear N-scaling of $\Delta_{H^2_0}$
- ullet For a quantum battery built from N local terms $\Delta_{H_0^2} = \Delta_{H_0^2}^{
 m diag} + \Delta_{H_0^2}^{
 m ent}$
- $lacktriangle \Delta_{H_0^2}^{
 m ent}(au)$ is the sum of $\sim N^2$ terms and vanishes if $e^{-iH_1t}|0\rangle$ is a product state.

[Julià-Farré et.al. '20, Rossini et.al. '20]

* Quench Hamiltonians:

$$H_0 = h \sum_{i=1}^{N/2} \sigma_i^a \quad a = x, z$$

$$H_1 = H_{\text{SYK}}^{(q)} \qquad q = 2, 4$$

$$\langle J_{i_1 \dots i_q}^2 \rangle = \frac{J^2(q-1)!}{N^{q-1}}$$

◆ Jordan-Wigner map

$$\psi_{2j-1} = \frac{1}{\sqrt{2}} \left(\prod_{i=1}^{j-1} \sigma_i^z \right) \sigma_j^x$$

$$\psi_{2j} = \frac{1}{\sqrt{2}} \left(\prod_{i=1}^{j-1} \sigma_i^z \right) \sigma_j^y$$

◆ Super-linear N-scaling in

$$\Delta_{H_0^2}(\tau) \Rightarrow P(\tau^*) \sim N^{\frac{1}{2} + \alpha}$$

SYK Batteries - Numerical Results

[Rosa et.al. '20, Carrega-Kim-JM-Ole-Rosa]

- ◆ MBL quantum batteries outperform (Anderson) spinchain batteries but still has significant energy fluctuations at early times..
- The SYK quantum battery does even better, exhibiting a greater precision and stability at all times!
- The SYK battery saturates at a larger charge and faster with decreasing optimal charging time and increasing optimal stored energy with N

SYK Batteries - Numerical Results

[Rosa et.al. '20, Carrega-Kim-JM-Ole-Rosa]

- The x-models are (roughly)
 insensitive to the degree of
 locality of the quench
 Hamiltonian with respect to its
 scaling with N
- This behaviour is a consequence of the operator size of H_0^a . The simple operators in the battery Hamiltonian are no longer so in the Majorana representation: $\sigma^z = -2iv \cos \pi + v \cos \theta$

$$\sigma_i^z = -2i\psi_{2i-1}\psi_{2i}$$

$$\sigma_i^x = 2^{i-\frac{1}{2}}(-i)^{i-1} \prod_{p=1}^{2i-1} \psi_p$$

Beyond SYK - Batteries on Graphs

- Thow does a change of the interactions of the quantum system affect the quantum battery properties?
- SYK model \longleftrightarrow complete (hyper)graph \leadsto general connected

(hyper)graph
$$\longrightarrow \langle J_{i_1 \cdots i_q} \rangle = \frac{(q-1)!}{n_{\text{edges}} N^{q-1}} \begin{pmatrix} N \\ q \end{pmatrix}$$

Circle

◆ SYK₂

12

10

10

Notice that the star-graph x-model out-performs even standard SYK and SYK quantum batteries!

[Carrega-Kim-JM-Ole-Rosa]

We consider two graph topologies with:

Each Majorana is connected with its nearest neighbours

A single Majorana ψ_N is connected to all others

In both cases we set

$$n_{\text{edges}} = N = 2L$$

Batteries on Graphs - Perturbation theory

[Carrega-Kim-JM-Ole-Rosa]

- ullet We want to compute the **power**: $\overline{P(au)} = \overline{|\langle [H_1, e^{iH_1 au} H_0 e^{-iH_1 au}] \rangle|}$
- With some simplification coming from the average over Gaussian couplings

$$\overline{[H_1, e^{iH_1\tau}H_0e^{-iH_1\tau}]} \sim i\tau \overline{[H_1, [H_1, H_0]]} + \frac{(i\tau)^3}{3!} \overline{[H_1, [H_1, [H_1, [H_1, H_0]]]]} + \cdots$$

- In practice, computing the proliferating nested commutators is formidable.
- ullet To check the formula, let's take for H_0 the x-model and for H_1 the quadratic SYK model.
- \bullet We can compute up to 8 nested commutators to get an expression for $\overline{P^{(8)}(\tau)}$
- ◆ All N-dependence comes from the size of the static Hamiltonian

Operator Complexity

[Rabinovici et.al.'20, Barbón et.al.'19]

- How to characterise operator spreading in a network?
- Krylov (K-)complexity
 quantifies the growth of an operator
 in Hilbert space with respect to a
 specific basis the Krylov basis by successive nested commutators.

- Some properties of K-complexity (C_K):
 - $lacktriangledown C_K$ depends on the Hamiltonian H_1 and the reference operator H_0 only.
 - ◆ It is able to distinguish between all linearly-independent operators of a fixed length
 - It is bounded above since $C_K \leq D^2 D + 1$ with $D = \dim(\mathcal{H})$
 - Chaotic Hamiltonians are conjectured to saturate the bound.

Jeff Murugan (UCT)

Operator Complexity

[Rabinovici et.al.'20, Barbón et.al.'19]

- How to characterise operator spreading in a network?
- Krylov (K-)complexity
 quantifies the growth of an operator
 in Hilbert space with respect to a
 specific basis the Krylov basis by successive nested commutators.

 Given a set of Lanczos coefficients and a Krylov basis,

$$|\mathcal{O}(t)| = \sum_{n=0}^{K-1} i^n \phi_n(t) |\mathcal{O}_n|$$

where the "wavefunctions" $\phi_n(t)$ encode how the operator is distributed over the Krylov basis

K-Complexity:

$$C_K(t) = \sum_{n=0}^{K-1} n|\phi_n(t)|^2$$

- Some properties of K-complexity (C_K):
 - ullet C_K depends on the Hamiltonian H_1 and the reference operator H_0 only.
 - ◆ It is able to distinguish between all linearly-independent operators of a fixed length
 - lacktriangle It is bounded above since $C_K \leq D^2 D + 1$ with $D = \dim(\mathcal{H})$
 - Chaotic Hamiltonians are conjectured to saturate the bound.

Small-World Networks

[Watts-Strogatz '98, Watts '99]

Small-World Networks

[Watts-Strogatz '98, Watts '99]

Small world networks interpolate between the clustering (localising) properties of regular graphs and the rapid spreading of information in random networks.

An N-node small world network is a graph in which:

- ullet the **typical distance** between two randomly selected nodes in the network $L=\sum_{i\neq j}d_{ij}/(N^2-N)\sim \log N$
- there is a large degree of clustering.

Small worldness of a graph can be measured by:

- The smallness coefficient $\sigma=(C/C_r)/(L/L_r)$ which is >1 for a small world network but very dependent on the network size.
- ullet The small world parameter $\omega=1-|(L_r/L-C/C_l)|$ which ranges between O (regular) and I (small world)

Scale-free networks are a special class of small word graphs that proliferate a large number of hubs. As a result, the mean path length are significantly shorter and scale like $L \sim \log\log N$

The Watts-Strogatz Protocol

[Watts-Strogatz'98]

The resulting small world network inherits its clustering properties from the underlying lattice and its short path length from the random long-range connections.

- ◆ Start with a regular N-node lattice with k/2-nearest-neighbour edges.
- \bullet At each node n_i :
 - ullet Iterate through each edge (i,j) connecting n_i to $n_j
 eq n_i$
 - lacktriangle With probability p, rewire the edge by replacing (i,j) with a random (i,k)

- ◆ The clustering coefficient $C_i = 2E_i/(k_i(k_i-1))$ measures how cliquey the graph is.
- The path length $L=\sum_{i\neq j}d_{ij}/(N(N-1))$ of the network is the average of the shortest geodesic between any two nodes.

Jeff Murugan (UCT)

The Watts-Strogatz Protocol

[Watts-Strogatz'98]

The Watts-Strogatz Protocol

[Watts-Strogatz'98]

The resulting small world network inherits its clustering properties from the underlying lattice and its short path length from the random long-range connections.

- ◆ Start with a regular N-node lattice with k/2-nearest-neighbour edges.
- \bullet At each node n_i :
 - ullet Iterate through each edge (i,j) connecting n_i to $n_j
 eq n_i$
 - lacktriangle With probability p, rewire the edge by replacing (i,j) with a random (i,k)

- ◆ The clustering coefficient $C_i = 2E_i/(k_i(k_i-1))$ measures how cliquey the graph is.
- The path length $L=\sum_{i\neq j}d_{ij}/(N(N-1))$ of the network is the average of the shortest geodesic between any two nodes.

Jeff Murugan (UCT)

Operator Complexity - Numerical Results

[Carrega-Kim-JM-Ole-Rosa]

- For small operators, the SYK_2 model does not perform significantly better than the low probability small-world graphs \longrightarrow SYK_2 is not a scrambling system.
- ◆ However the situation is very different when large operators are involved: a highly connected graph like SYK₂ does the job very well.
- Finally, notice that the small-world graph works just as well as SYK_2 for large p. This is interesting because it has far fewer edges than SYK_2 (2N vs N^2) but the interactions are very efficient.

Conclusions and Future work

Some observations:

- Quantum batteries provide (yet) another arena to display the (dare I say) power of the SYK model!
- Quantum advantage requires two ingredients (i) sufficiently non-local operators and (ii) interactions
 that are able to utilise the non-locality.
- * SYK-like models on graphs are a versatile set of quantum systems to probe thermalisation/localisation/chaos transitions etc. [see e.g. Xu et.al. '20, Garcia-Garcia et.al. '20, Lukas '19 and Hoffman-JM-Shock '19]

* Some open questions:

- ullet How tight is the upper bound $P_N(au) \leq 2\sqrt{\Delta_{H_0^2}(au)\Delta_{H_1^2}(au)}$ on the charging power and, by extension, the quantum advantage Γ for **quantum batteries** defined on **graphs?** [see Kim-Safranek-Rosa to appear]
- ◆ How do these results relate to the Operator Thermalisation Hypothesis? [see the works of Schalm et.al.]
- ◆ What (if any) is the holographic interpretation of these statements? [along the lines of Dhar et.al '18?]

Hristo! 감사합니다 СПасибі! つまり Paldies

西部のNdiyabulela! Ke a leboha! Paldies

西森 ευχαριστώ! Gracies! Ngeyabonga! Baie Dankie!

Děkuji Ukhani! Thank You Merci! Asante
Obrigado! Grazias! Tak

Wherei! Asante
Obrigado! Danke! Ďakujem Tak

Barjata i Gracias ध्रम्यवाद Grazie! ありがとう
Suksema! Juspajaraña エンボ Тэţəkkür edirəm!

Dzięki Obrigadu! Дзякуй Благодаря Diolch
Dank Je Dankon Mahalo