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WHY BATTERIES?
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~ Quantum batterieg (Ol

At P : B [Alicki-Fannes’l3, Binder et.al.’l5]

|* A quantum battery ic a d-dimengiona quantum gggfem with non-
degenerate energy levele from which energy can be reveribly < A d;level patiertp =
extracted, or depogited into, by eyelie unitary operations.
\ ! | v tome J i Z c, ‘]
\ L
* Energy ie extracted
+«  through the quench
1‘ 5 |2 = protocol
2 H(t) = Ho + V(0
CA golution of the von Neumann equation ig given by p(t) = U (t)pU (¥ ’/ ;;2? d?rff:]’ﬁ:o\[;\:)ej
i U(t) = T exp (_i / i ds H( S)) Neumann equation
Shet : p(t) = —i[H(t), p(t)]
* The work extracted after timeTie W (7) = Tr (pHy) — Tr (p(7)Hy) o

* Ergotropy is the maximum amount of extractable work optimized over all | N—— J
unitary operationg

: L= S Jeff Murugan (UCT)
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|* A passive state ig on from
which ho more work can be
extracted.

* 0 ig 4 paggive state iff
gl (O'HO) S 1r (UO'UTHO)

for all unitarieq.

* Any state P posgesses a unique
passive state for which

e — 11 (pHp) — Tr(0,Hp)

and obtained by a unitary

operation that rearrangeg the
eigenvalueg of o in non-increaging
order.
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properties of batteries

+-€

* All thermal states are pagsive

2¢

[Alicki-Fannesg’l3, Binder et.al.’15]

~

and, for d=2, all pagsive states are
thermal

* The product of passive states
ig not necessarily a pagsive state
* A completely passive state
eatigties ®"0, = ogn,

* A state is completely passive iff

Ned

ﬂ ie thermal

///’Ergotvropg ie bounded, ince
Wax < tr (pHp) — tr (wzHo)
where wg = exp (—SHy) /Z ie a canonical Gibbe state.

* 3 must be dialled o that the von Neumann entropy
S(p) = —tr (pln p) = S(wp)

_J
N
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Engembleg of batteries

\paggive etate ig reached?

‘v Nouu le1L e build a baﬁerg out of an ensemble of N d-
dimensional unit cells with global Hamiltonian

=Y

* Can additional work be extracted from the product state until a

\ [Alicki-Fannes ’l3, Binder et.al.’(5]

Aw

N
= E Ia i
I

A e

. |
| ® The paggive state

ageociated 1o a product
ie geparable but requires
at leact 2-body
unitaries

* Optimal work
extraction can be
attained without
entanglement, but

) r
\/ pres 10 20 30 40
e I . i
g . g
(- . h
y * The maximum amount of work per copy
1
wmaX(N) il N ( [(® P — OxN ) HN})
* For a large ensemble the energy in the pagsive state o g~ ,
doeg not differ much from an engemble of Gibbe states ™ wj
]\;im wmaX(N) — tr {pH(()l)} T [wg[{él)}
k =4 0.@ J

requireg longer times |
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Charging quantur batferies

e T BRI =12 | e ) : -
| * For finite magnitude Hamiltoniansg, unitary operationg require 3
finite time to perform.

the time-dependent Hamiltonian H (¢), this time ig bounded by
T([¥),|¢)) = harccos|(¥|¢)|/min{ £, AE}

L

* [f a pure state |1) i evolved 1o |¢) by the unitary U (¢) generated by

1|B—+2: D
a e D s 4.

n
/
A
| “\Q
\
| \\, -

* The ingtantaneous power of some unitary charging between p

and p(t) = U (t)pU (t)ie

d

* The average power ( P) ig the ratio between the energy deposited

on the battery and the time required to perform the unitary operation.

([Ho + V (1), p(t)| Ho)

e p—

\

[that of the local Hamiltonian

[Alicki-Fannesg’l3, Binder et.al.’15]
- ) sd

otk e oy 1t
| * Local driving Hamiltonian

N
N
Hﬁ = C|| Z (’1><dl =E hC) & j£i ]-j
(==l

* Global driving Hamiltonian
H™ = (|[E)(G| + h.c.)
subject to the congtraint that

|[Hllop = Emax >0

* The collective Hamiltonian
driveg |G) to | E) along the
shortest path in the gpace of
entangled stateg giving
power advantage \-timeg

J

\ _/

—
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) [Alicki-Fannes ’13, Friis et.al.’l7]

- Large power ~~ ghort timeg ~~ large fluctuationg ~~ instabilities i i
* [n a gystem of harmonic oscillatorg in the Gibbg etate charged by | * The advantage of
unitary operationg, charging precigion can be optimised by uging uging entangling
(Gaussian unitary operations: pure gingle-mode squeezing or operationg over local
combinationg of squeezing and digplacements  oneg can be

~— \/ —— / parameteriged by the

i Charging power 3 i Dm P quantum advantage
cannot be enhanced by | ¥ -0 Y0 v =l Filg i ['=(P)/(F)
increaging the number of]| g ~L A |

unit celle in the battery. | * Bounds onT" depend on the congtrainte on the driving Hamiltonian.
BTR order of the ﬁ’ Congtraining the standard deviation of the Hamiltonian giveg an
advantage T' ~ v/ IV while congtraining the average energy of H requlte

in a quantum advantage I' ~ N ;

interactiong (k)

between unit celle ie an
h’ For a k-local Hamiltonian with 2 < k < N and participation number |

at mogtm > 1bounds the quantum advantage I' < k*(m — 1) + k]

-/
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- [Rosa ;af.al. 20, Rosgini et.al.’20]

/The Qachdev-Ye-Kitaev mode! ic 4 quantum mechanical gystem of| .~ ———
* Charging protocol. :

H(t) = Hy + «\(t)(Ho — Hy) |

0 Tt 0= .
)‘(t){ 1. Od<tii-ala

\' Majorana fermiong with all-to-all random q-body interactions |
| conjectured to be dual to a nearly AdS, geometry.

i \
‘\

r '
* SYK Hamittonian i * Energy etored after time 7
Hy = 92T, i s, | @ E(r) = {3(7)|Ho|(7)) — (0| Ho|0)

 with Gauggian random
couplingg J;, ...;,

* The gtored energy;

* Grows until come model-

* Some properties: — dependent time-geale 7
o1 . 0.6 1 —
[ [t ig golvable in the large N . » Then fluctuates wildly
imit 047 ==
about some average £
* [t hag an emergent low- 02-
* with a model-dependent
enerqy conformal eymmetry . 3 P
* [t ig maximally chaotic T T o e IS SR 08 = S

\CHIN ) — —— Jeff Murugan (UCT)
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SYK Batteries

o To oompare SYK baﬁerleg +o o’rher modelg look at the optimal

average power Py (7*) where Py (T

Aoz (T)

<2\/AH2 AHQ( )and

% /O A (0%)r — (0)7] -Specifically: A2 (7) <> charging

6peed while A2 (7) <+ distance travelled in the Hilbert apace.

\

y,

0.5 1

0.4 1

0.3 1
<
0.2 1

0.1 4

— MBL

--- ISYK

0.0 1= s
0.1 1 10 100 600

T

“— —

// i

product state.
- E

* For a quantum battery built from V local terms A ;> =

* Genuine quantum advantage «— superlinear N-gealing of A ;2
Adlag _|_ Aent

* A% (7) ig the um of ~ N terme and vanighes if e—zHlty()) i< 4

| * Quantum advantage «— faster-than-linear gcaling of Py (7) with V

‘> Quench Hamiltonians: |
| N/2
H() =Sih Z O'Zq a—=2x,=
2 ==1

T

4 e

2, 1\/§<ZH101->0]
A -

> %j_ﬁ (HJ?) 0?

—_—

[Julia-Farré et.al.’20, Rosgini et.al.’20]

* Super-linear N-gealing in

Aps(T) = P(1%) ~ N2t©
G ils 5/
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~ SYK Batterieg - Numerical Regulte

[Rosa e'f al ’20 Garrega ~Kim-J M Ole -Rosa]

| *MBL quantum batteries \

. outperform (Anderson) gpin-

5 61 i chain batterieg but gtill hag

0.3+ -l << qignificant enerqy fluctuationg
"oz o 8 10 12 14 at early timeg..

L
o ~m 2- * The SYK quantum battery
| --- ISYK 13

B e me e 8 P doeg even better, exhibiting

— — — -t - |greater precigion and

stability at all times!

» SYK4 z-model = SYK,; x-model
-+ SYK, z-model SYK; x-model

* The SYK battery eaturateq at
3 larger charge and faster

+ SYK4 z-model - SYK4 x-model wl‘l'h decreag[ng Opﬂma[

-+ SYK, z-model SYK5 x-model

M == | |¢harging time andinereasing

Qpﬁma[ gtored energy with N

Jeff Murugan (UCT)



~ SYK Batterieg - Numerical Regulte

[Rosa et al ’20 Garrega ~Kim-J M Ole -Rosa]

(+ The x-modele are (roughly) o
. ingengitive to the degree of
il g i locality of the quench
03 - Hamittonian with regpect to ite
s x 41 . :
0.2 - 8 10 12 14 Scaling with N
L
o — MBL 2 * Thig behaviour ig 4
0 --- ISYK
o1 1 do 100 600 ; ——————— | concequence of the operator
e r L . .
* — | size of H. The gimple
AT L) PuaxlL) k
operatorg in the battery
T < Hamiltonian are no longer o in
N I e f. the Majorana repregentation :
e S |l el
I8 | e 2i—1
——i 10 12 li— I 8 10 12 14—— P Bl 3 ,L_]_
Qi 24 2 (_Z) H wp
\L p=1 J
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Beyond SYK - Batterieg on Graphg

> How doeg 5 change of the interactions of fhe quantum gygstem . [Garrega KCin-JM-Ole- -Roga]

affect the quantum battery propertiee? ;o —
* SYK model «— complete (hyper)graph ~~ general connected % * We congider two graph

(byper)graph ~~ ;, (4= ]\1[2]' : ( N ) topologies with :
N ! = Vq S J Each Majorana
Pt ~ is connected

4 / N , 1>“ fc\ f Wlfh |-|-g nearest
— Nl I.. N N\ '5 |
i ; Nz | \ neighbours

SYK, e 'i | N i B

? v/ |
» | 4\
1 W K / . <V 77 ,‘/-‘f:'/

Cr— ‘ ‘ — C o OIS
. g =l — connected to all
0 . Noﬁce that the star-graph y othere

y x-model out-performg even * [n both cageg we get

 circe atandard SYK and SYK

= Star Nedges — N =2L
+ SYK, : \_ 5 1 , _
kquanfum batterieg!

10

_/
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Batterieg Derturbation theory

[Carrega-Kim-JM-Ole-Rosa ]

| * We want to compute the power: P(7) = [([H;, eif17 Hye—iH17])] 2

* With some simplification coming from the average over Gausgian couplings

s - —

: - 2 11¥5
RE s Hoe 17| ~ ir[Hy, [Hy, Hol| + (Z;) |Hy, [Hy, [Hy, [Hy, Holl]] + - -
- J IR - | y,
* [n practice, computing the | N =N
proliferating nested commutatorg ig -4 i>‘ SR
* To check the formula, let’s take Q‘x* ST
for H the x-model and for F; the | %

quadratic SYK model.
* We can compute up 1o 8 nested

commutatorg to get an expresgion
Lot P8) (1)

'+ All N-dependence comeg from the
gize of the etatic Hamittonian

/ Jeff Murugan (UCT)
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[Rabinovici et.al”’20, Barbén et.al.’l9]
Joss 7 "~ "R

e i 5 (|) He = span {L75O)
| ® How to characterige operator

spreading in a network? \ /

* Krylov (K-)ecomplexity Bos Lanczog
| quantifieg the growth of an operator > . L>' Th ; g

in Hilbert epace with regpect 1o a ; / \

gpecific bagig - the Krylov bagis - : .‘ 'HZ?' Fotliiodm {bn} il

by euccesgive nested commutatore. iﬂ,(‘,.

/ [
~

(+ Qome properties of K-complexity (C'x):

___* Chagtic Hamittoniang are conjectured to gaturate the bound.

* C' i depends on the Hamiltonian H 1 and the reference operator H only.

* [t ig able to distinguish between all linearly-independent operatorg of a fixed length
* [t ie bounded above gince Crr < D* — D + 1 with D = dim(#H)

) Jeff Murugan (UCT)
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[Rabmowcl et. al ’20 Barbon et. al ’19]
3 ™
L PRFE—=: 2 '~ Given a get of Lanczos
| * How to characterige operator coetficiente a}n{d ?Kf ylov bagie,
spreading in a network? ‘ O) =) i onE) O
n=0
® . H B « 1 b))
Krylov (K-)eomplexity SIZAN S where the “wavefunctiong” ¢y, (%)
quantifies the growth of an operator = ; i>' f encode how the operator ig
in Hilbert epace with regpect 1o a 1| dictributed over the Krylov bagi
gpecific bagig - the Krylov bagis - =S A K- Comp[exﬂy
by successive nested commutators. K\.,,‘*'
! ﬁ i Z n|n (t)

/\ L J
- & Y I 1
* Some properties of K-complexity (C')

* C' i depends on the Hamiltonian H 1 and the reference operator H only.

* [t ig able to distinguish between all linearly-independent operatorg of a fixed length

* [t ie bounded above gince Crr < D* — D + 1 with D = dim(#H)
___* Chagtic Hamittoniang are conjectured to gaturate the bound. ) Jeff Murugan (UCT)
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Small-World Networke

[Watts-Strogatz ’98, Watts ’99]
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_ Small-World Networke

[Watts-Strogatz ’98, Watts ’99]

f Q?nall “Uuorld networke )

interpolate between the

clutering (loealising) —
propertieg of reqular graphe \_

- and the rapid spreading of
information in random

\_networke. | =,

y ~% 7 2 7 2 y 0 i g W, 6y Y i
X e & T e 4 ok = WA 4 et s i 4 >
/ -y Ty /u’ V4 T PO / 4 > X /' weid o f e /
X / X / x4 4 3 4 T 7 / 5
e 7 / 4 0 / 4 g <& g W, 4 4 /
v, Ty e 5 o 7 / b
TX ) 4 & ) %
/ / = / % g
£ L £ 14) g
4 &
" o>
\ e “‘/\
I\
. / | 1l

| An N-node small world network is a graph in which: "
* the typical distance between two randomly selected nodes in
the network L = >~ di;/(N? — N) ~log N
* there ig 4 large degree of elustering. i
S

q
Small worldness of a graph can be meagured by:

* The emallnese coefficient o = (C'/C,.)/(L/L,) which i > for g
small world network but very dependent on the network gize.

* The small world parameter w = 1 — |(L,./L — C/C})| which
rangeg between O (regular) and | (emall world)

3/

| Scale-free networks are 3
gpecial clage of gmall word
graphs that proliferate a large
number of hubs. Ag a reault,

' he mean path length are
significantly shorter and scale

L[ike L ~loglog N .

Jeff Murugan (UCT)



The atz Protocol

—_—

[Watte-Strogatz 98]

/The regulting emall i | > Qtart with & reqular N-node lattice with k/2-nearect-neighbour edges.
world network inherite | | ® At each node 72; :

ite elustering A e [terate through each edge (7, j) connecting 12; to m; # n;

properties from the = * With probability p, rewire the edge by replacing (¢, ) with a random (%, k)}
| underlying lattice and : : \Y B

) Regular Small-world Random

ite short path length e

from the random §/ )@

)

long-range N,
\\connec’nons. ) >

CThe clustering coefficient C; = 25, /(k;(k; — 1))

| meaguree how cliquey the graph .

* The pathlength L = 3", . d;; /(N (N — 1)) j

of the network ig the average of the shortegt geodesic |
N Bl 1| ang tux nOdeL& v Jeff Murugan (UCT)




The atz Protocol

==  ————

[Watte-Strogatz 98]
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The atz Protocol

—_—

[Watte-Strogatz 98]

/The regulting emall i | > Qtart with & reqular N-node lattice with k/2-nearect-neighbour edges.
world network inherite | | ® At each node 72; :

ite elustering A e [terate through each edge (7, j) connecting 12; to m; # n;

properties from the = * With probability p, rewire the edge by replacing (¢, ) with a random (%, k)}
| underlying lattice and : : \Y B

) Regular Small-world Random

ite short path length e

from the random §/ )@

)

long-range N,
\\connec’nons. ) >

CThe clustering coefficient C; = 25, /(k;(k; — 1))

| meaguree how cliquey the graph .

* The pathlength L = 3", . d;; /(N (N — 1)) j

of the network ig the average of the shortegt geodesic |
N Bl 1| ang tux nOdeL& v Jeff Murugan (UCT)




Operator Reaulte

_____ Low size SYK,

----- Large size SYK,

— Low size small world

— Low size small world

> For small operators, the SYK, model doeg not gt

----- Low size SYK>
----- Large size SYK,
— Low size small world

— Low size small world

[Carrega-Kim-JM-Ole-Rosa ]

perform gignificantly better than the low probability
small-world graphg ~~> SYK ig not a serambling
qystem. |

* However the gituation ie very different when large
operators are involved: a highly eonneeted graph
like SYK doeg the job very well.

* Finally, notice that the emall-world graph works just
ag well ag SYK,, for large p. Thig ig interesting
because it hag far fewer edgeg than SYK,

(2N ve N #) but the interactions are very

\gfﬁcient 7 ,, i

Jeff Murugan (UCT)



Conclugions and

* Some observations:
* Quantum batterieg provide (yet) another arena to digplay the (dare | say) power of the SYK model!

* Quantum advantage requireg two ingredients (i) sufficiently non-local operators and (i) interactions
that are able to utilige the non-locality.

* SYK-like models on graphs are a versatile get of quantum gystemg to probe thermaligation/
localieation/chaog trangitiong ete.  [eee e.0. Xu et.al.’20, Garcia-Garcia et.al.’20, Lukas '[9 and Hoffman-JM-Shock (9 ]

* Some open questions:

* How tight ig the upper bound Py (1) < 2\/ A2 (1) Ag2(7) on the charging power and, by extengion,
the quantum advantage I" for quantum batteries defined on graphs? [cee Kim-Safranek-Rosa - fo appear ]

* How do thege regults relate to the Operator Thermalisation Hypothesis? [see the works of Schalm et.al]

* What (if any) ie the holographic interpretation of thege statemente?  [along the linec of Dhar et.al 18]

Jeff Murugan (UCT)
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