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Global symmetry

• Global symmetry is one of the few universally applicable tools in 
analyzing strongly coupled quantum systems.
• Global symmetry can have ‘t Hooft anomalies --- obstructions to 

gauging it.
• In recent years, the notion of global symmetry has been generalized 

in different directions. 
• This has led to new constraints on renormalization group flows, new 

organizing principles of topological phases, and new dualities.
• Applications in high energy physics, condensed matter physics, and 

mathematics. 
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Three generalizations
• I will discuss three generalizations of ordinary global symmetries:
1. Higher-form symmetries
2. Subsystem symmetries
3. Non-invertible topological operators

• Disclaimer: This is an enormous subject and it’s impossible to cover every topic in one talk. I apologize in advance 
for the variety of fascinating papers that are not discussed below.

• Many other generalizations of global symmetries not discussed here, e.g. dipole symmetry [Pretko 2018, Seiberg
2019, Son’s talk…], asymptotic symmetry [Strominger’s book 2017, Pasterski’s review talk, Strominger and Taylor’s 
discussion].

• This talk is mostly about internal global symmetries in bosonic systems. For an example of a gravitational anomaly, 
see [Tachikawa’s talk]. For anomalies in fermionic theories, see [Gomis’ and Putrov’s talks].

• This talk will be structured from a field theory/high energy physics perspective. See [Wen’s discussion] for a CMT 
perspective on topological phases.
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Global vs. gauge symmetry

• Global symmetry acts 
nontrivially on operators. 
• It is an intrinsic property of the 

quantum system.
• It’s therefore important to 

characterize global symmetries 
abstractly and invariantly, 
without referring to any 
Lagrangian description.

• Gauge “symmetry” leaves all 
operators invariant. It’s a 
redundancy.
• It’s ambiguous --- there can be a 

gauge symmetry in one duality 
frame but not in another. (E.g. 
2+1d 𝑈(1) gauge theory is dual 
to a free compact scalar field 
theory.)
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The adjective “global” doesn’t mean that it necessarily acts globally on the whole space.



Ordinary global symmetry

An internal ordinary global symmetry 𝑔 ∈ 𝐺 in 𝑑 spacetime dimensions
can be characterized by its symmetry operator 𝑈! 𝑀(#$%) . 
Some general properties:
• It is supported on a codimension-1 manifold 𝑀(#$%) in spacetime. For 

example, it can be supported over the whole space at a fixed time.
• It is topological under deformation of 𝑀(#$%). In particular, it is 

conserved under time evolution.
• The fusion between these operators obeys the group multiplication law

𝑈!! 𝑀
(#$%) 𝑈!" 𝑀

(#$%) = 𝑈!!!" 𝑀
(#$%)
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Ordinary global symmetry

Next, we generalize the ordinary global symmetry by modifying the 
above conditions.
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Properties of 
symmetry op.

Ordinary symmetry
𝑈! 𝑀(#$%)

Example: 𝑈(1)

exp(𝑖𝜃 +
'("#$)

𝑗(#$%))

Codimension
in spacetime

1 𝑗(#$%) is a 𝑑 − 1-form

Topological yes 𝑗(#$%) is closed, 𝑑𝑗(#$%) = 0

Fusion rule group
𝑈!$𝑈!& = 𝑈!$!&

𝑈(1)
𝑈($𝑈(& = 𝑈($)(&



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 𝑞 + 1 𝑞 + 1 𝑞 + 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
fusion ring

𝑎×𝑏 =7
,

𝑁-., 𝑐
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𝑁-., 𝑐
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Global symmetries and generalizations
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Possibly more generalizations by combining different columns



Higher-Form Symmetry



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 𝑞 + 1 𝑞 + 1 𝑞 + 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
fusion ring

𝑎×𝑏 =7
,

𝑁-., 𝑐
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Higher-form global symmetry
[Gaiotto-Kapustin-Seiberg-Willett 2014,…]
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Properties of 
symmetry op.

𝑞-form symmetry
𝑈! 𝑀(#$/$%)

Example: 𝑈(1)

exp(𝑖𝜃 +
'("#'#$)

𝑗(#$/$%))

Codimension
in spacetime

𝑞 + 1 𝑗(#$/$%) is a 𝑑 − 𝑞 − 1-form

Topological yes 𝑗(#$/$%) is closed, 
𝑑𝑗(#$/$%) = 0

Fusion rule
group

𝑈!$𝑈!& = 𝑈!$!&
𝑈(1)

𝑈($𝑈(& = 𝑈($)(&

The charged objects are 𝑞-dimensional.



Higher-form symmetries and anomalies
[Gaiotto-Kapustin-Seiberg-Willett 2014,…]

• Higher-form global symmetries can also have ‘t Hooft anomalies or 
mixed anomalies with ordinary global symmetries.
• Such anomalies have to be matched along the RG flow. Nontrivial 

anomalies imply that the low energy phase can NOT be trivially 
gapped with a non-degenerate ground state.
• Example: 3+1d 𝑆𝑈(2) pure gauge theory at 𝜃 = 𝜋 has a mixed 

anomaly between 𝐶𝑃 and the ℤ( one-form center symmetry. The low 
energy phase cannot be trivially gapped. (Contrast with the 
expectation at  𝜃 = 0.) [Gaiotto-Kapustin-Komargodski-Seiberg 2017]
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Higher-form symmetries in TQFT
• Topological Quantum Field Theory (TQFT) (in 2+1d or above) is generally 

characterized by the extended topological operators, a subset of which 
generates the higher-form global symmetries.
• The Wilson lines of a 2+1d abelian Chern-Simons theory generate the 1-

form global symmetry. They arise from the anyons in the microscopic 
lattice model.
• The braiding between anyons are interpreted as the ‘t Hooft anomaly of 

the 1-form global symmetry [Gaiotto-Kapustin-Seiberg-Willett 2014, Gomis-Komargodski-
Seiberg 2016, Hsin-Lam-Seiberg 2018][see also Kapustin-Thorngren 2013].
• Each gapped boundary of the abelian CS theory is characterized by a 

Lagrangian, non-anomalous 1-form symmetry subgroup [Kapustin-Saulina
2011,…][See Komargodski’s talk].
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1-form symmetries in 2+1d TQFT

• Example: 2+1d ℤ! gauge theory described by two 1-form gauge fields 𝑎, $𝑎
[Maldacena-Moore-Seiberg 2001, Banks-Seiberg 2010, Kapustin-Seiberg 2014]:

ℒ =
2
2𝜋

𝑎𝑑 $𝑎

This is the low energy continuum field theory of the toric code [Kitaev 1997].
• The Wilson lines  𝑈 = exp 𝑖 ∮" 𝑎 , 0𝑈 = exp 𝑖 ∮" $𝑎 generate a ℤ!×ℤ! 1-

form global symmetry. They depend only on the topology of the line 𝐿.
• The nontrivial braiding between 𝑈, 0𝑈 implies the mixed ‘t Hooft anomaly of 

this ℤ!×ℤ! 1-form global symmetry.
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1-form symmetries in 2+1d TQFT

• Let the space be a two-torus with A-cycle 𝐿# and B-cycle 𝐿$. The anomaly
implies (similarly A, B exchanged)

𝑈 𝐿# 0𝑈 𝐿$ = −0𝑈 𝐿$ 𝑈(𝐿#)
which leads to a 𝟒-fold ground state degeneracy on the torus.
• This ground state degeneracy is robust because there is no local operator 

perturbation that can lift it.
• It’s a topological phase characterized by its 1-form global symmetry and 

anomaly.
• See [Nussinov-Ortiz 2007, …, Wen 2018, Wen’s discussion] for parallel discussions 

from the lattice perspective.
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Other topics

• Higher-group symmetry: mixture of higher-form symmetries of 
different degrees [Kapustin-Thorngren 2013, Cordova-Dumitrescu-Intriligator 2018-2020, 
Benini-Cordova-Hsin 2018,…]. 

• Higher-form symmetries in supersymmetric field theories from 
string/M/F-theory [Schafer-Nameki’s talk].

• Spontaneous breaking of higher-form symmetries [McGreevy’s talk].
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Subsystem Symmetry



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 𝑞 + 1 𝑞 + 1 𝑞 + 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
fusion ring

𝑎×𝑏 =7
,

𝑁-., 𝑐
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Subsystem global symmetry
[…, Lawler-Fradkin 2004,…]
• The symmetry operator of a subsystem global symmetry can be supported on 

certain higher-codimensional manifolds 𝐿 in space (E.g. straight lines on a plane).

• Unlike the higher-form symmetry, the subsystem symmetry operator depends 
NOT only on the topology of the manifold 𝐿. 

• It is conserved in time. The system is not Lorentz invariant.
• It acts on the Hilbert space --- it’s a global symmetry rather than a gauge 

symmetry. It’s also not “in-between global and gauge.”
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Higher-form symmetry Subsystem symmetry

𝑈! 𝐿 = 𝑈!(𝐿0) if  𝐿 ∼ 𝐿′ 𝑈! 𝐿 ≠ 𝑈! 𝐿0 for some 𝐿~𝐿′
𝜕1𝑈! 𝐿 = 0

See [Seiberg 2019, Qi-Radzihovsky-Hermele 2020] for related discussions in a different context.



UV/IR mixing

• There are many interesting lattice models exhibiting subsystem global 
symmetries. The number of subsystem symmetry operators generally 
depends on the number of lattice points. This leads to dramatic 
consequences on the low energy description.
• Observables vary at the lattice scale 𝑎, and hence they are 

discontinuous in the continuum limit --- UV/IR mixing [Seiberg-SHS 2020, 
Seiberg’s discussion].
• Reminiscent of the UV/IR mixing in the little string theory [Seiberg 1997]

and field theory on a non-commutative space [Minwalla-Van Raamsdonk-
Seiberg 1999]. 
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𝑼(𝟏) 𝐬ubsystem symmetry

• Consider a 2+1-dimensional field theory based on a free compact scalar 
𝜙 ∼ 𝜙 + 2𝜋 [Paramekanti-Balents-Fisher 2002,…]:

𝑆 = ;𝑑𝑡𝑑𝑥𝑑𝑦
𝜇%
2

𝜕&𝜙 ! −
1
2𝜇

𝜕'𝜕(𝜙
!

• It has a 𝑈(1) subsystem global symmetry:
𝜙 𝑥, 𝑦, 𝑡 → 𝜙 𝑥, 𝑦, 𝑡 + 𝛼' 𝑥 + 𝛼( 𝑦

This a global symmetry, rather than a gauge symmetry.

• Noether currents: 𝑗& = 𝜇%𝜕&𝜙, 𝑗'( = − )
*
𝜕'𝜕(𝜙

𝜕&𝑗& = 𝜕'𝜕(𝑗'(
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𝑼(𝟏) 𝐬ubsystem symmetry

𝜕&𝑗& = 𝜕'𝜕(𝑗'(
• Conserved charge

𝑄' 𝑥 = F𝑑𝑦 𝑗&

𝜕&𝑄' 𝑥 = F𝑑𝑦𝜕&𝑗& = F𝑑𝑦𝜕((𝜕'𝑗'() = 0

• Independent conserved charge 𝑄'(𝑥) at every point in 𝑥 (similarly in 𝑦).
• Infinitely many such conserved charges in the continuum.
• UV/IR mixing in various observables such as correlation functions [Seiberg-SHS 

2020, Gorantla-Lam-Seiberg-SHS to appear].
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Fractons and subsystem symmetry
• Fracton [Chamon 2005, Haah 2011,…] is a large class of lattice spin models with 

many peculiar features:
1. Large ground state degeneracy that typically grows exponentially in the 

linear size of the system. 
2. The ground state degeneracy is robust: small deformations by local 

operators cannot lift the degeneracy in perturbation theory.
3. Excitations have restricted mobility.
• The key common feature of these models is the exact or emergent 

subsystem global symmetry. 
• Novel topological phases that do not admit a conventional continuum field 

theory description. 
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Fractons and subsystem symmetry
• One simple 3+1d gapped fracton model: X-cube model [Vijay-Haah-Fu 2016].
• Ground state degeneracy on a torus with periodic boundary conditions:

2!"!+!""+!"#,-

where 𝐿. is the number of lattice sites in the 𝑖-direction. It becomes infinite 
in the continuum limit, reflecting UV/IR mixing.
• The continuum field theory for the X-cube model takes the form of a BF-

type action involving two kinds of nonrelativistic tensor gauge fields 𝐴, I𝐴
(indices suppressed) [Slagle-Kim 2017, Seiberg-SHS 2020]

ℒ =
2
2𝜋 (𝐴%

J𝐵 + 𝐴 J𝐸)

where J𝐵, J𝐸 are the gauge invariant field strengths for I𝐴.
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Fractons and subsystem symmetry
• Subsystem symmetry operators of the X-cube model (logical operators):

𝑈 ∼ exp 𝑖 ∮$%&'(𝐴 , )𝑈 ∼ exp 𝑖 ∮)'*+ *𝐴
independent operator for each strip and line along the 𝑥, 𝑦, 𝑧 directions (with certain 
relations among them).

• The subsystem symmetry operators form 2𝐿, + 2𝐿- + 2𝐿. − 3 pairs of the clock and 
shift algebra 𝑈)𝑈 = −)𝑈𝑈 , 𝑈/ = )𝑈/ = 1. This leads to 2/0!1/0"1/0#23 ground states.

• This nontrivial algebra can be viewed as an anomaly of the subsystem symmetry [Seiberg-

SHS 2020, Burnell-Devakul-Gorantla-Lam-SHS to appear].

• In other more exotic gapped fracton models such as the Haah code [Haah 2011], the 
subsystem symmetry operators are supported on fractal geometric objects (rather than 
strips and lines) on the lattice.
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Lattice model (2+1)d toric code (3+1)d X-cube model

Torus ground states 2* 2*4()*4))*4*$+

Excitations Anyons Fractons, …

Low energy QFT

ℤ* gauge theory
2
2𝜋

𝑎𝑑 F𝑎

ℤ* tensor gauge theory
2
2𝜋

(𝐴5 H𝐵 + 𝐴 H𝐸)

Global symmetry 1-form symmetry Subsystem symmetry
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Generalized global symmetries
in topological phases of  matter

There are hybrid models that mix the higher-form symmetry and the subsystem symmetry
[Tantivasadakarn-Ji-Vijay 2021, Hsin-Slagle 2021].



Non-invertible 
Topological Operators



Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 𝑞 + 1 𝑞 + 1 𝑞 + 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
fusion ring

𝑎×𝑏 =7
,

𝑁-., 𝑐

30



Gauging in 1+1d

• If we gauge a non-anomalous ℤ/
(%) 0-form global symmetry of a 1+1d 

bosonic theory 𝑇, the original ℤ/
(%) symmetry is gauged and disappears, but 

we gain a new symmetry ℤ/
(%) in the orbifold theory 𝑇′ [Vafa 1986]. 

• We can then gauge ℤ/
(%) in 𝑇′ to retrieve 𝑇:

1+1d:  ℤ/
(%)

2342.52
ℤ/
(%)

• 𝑇 and 𝑇′ are two different theories. They might happen to be isomorphic to 
each other (e.g. Ising CFT), but ℤ/

(%) and ℤ/
(%) do not coexist at the same 

time in a well-defined 1+1d theory.
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Generalized symmetries from gauging

Higher-form symmetries and non-invertible topological operators can 
arise naturally from gauging ordinary global symmetries:
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(𝐷 + 1)d: ℤ)
(*)

!+,!-.!
ℤ)
(/$*$%)

[Gaiotto-Kapustin-Seiberg-Willett 2014, 
Tachikawa 2017]

(1+1)d:  ℤ)
(0)

!+,!-.!
ℤ)
(0)

[Vafa 1986]

The story is more intricate with more general tangential structures.

(1+1)d:  𝐺(0)
``!+,!-.!”

𝑅𝑒𝑝(𝐺)
[Brunner-Carqueville-Plencner 2014,…, 
Bhardwaj-Tachikawa 2017,
Chang-Lin-SHS-Wang-Yin 2018]

Non-invertible top. operatorsHigher-form symmetries



Non-invertible topological lines in 1+1d

• More generally, topological lines are extended operators that do not 
necessarily obey a group-like fusion rule:

𝐿+×𝐿3 =;
4

𝑁+34 𝐿4

• A non-invertible line 𝐿 does not have an inverse such that 𝐿×𝐿$% = 1.
• In recent years, non-invertible topological lines have been discussed 

from a modern perspective as generalizations of ordinary global 
symmetries [Bhardwaj-Tachikawa 2017, Chang-Lin-SHS-Wang-Yin 2018,…].

Many different names: topological symmetry, non-symmetry line, fusion category 
symmetry, algebraic higher symmetry, non-invertible symmetry…
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More than one 
term on RHS



Non-invertible topological lines in 1+1d

• Non-invertible topological lines are everywhere in 1+1d:
1. They have a long history in RCFT -- Verlinde lines [Verlinde 1988, Moore-Seiberg

1988-1989, Petkova-Zuber 2000, (Frohlich)-Fuchs-Runkel-Schweigert 2002-2006,…]. 
2. Wilson lines 𝑅𝑒𝑝(𝐺) from gauging a non-abelian global symmetry 𝐺(%).
3. From anomalous global symmetries in a fermionic theory after GSO 

[Thorngren 2018, Ji-SHS-Wen 2019].

• Lattice realization in condensed matter system: golden chain [Feiguin-Trebst-
Ludwig-Troyer-Kitaev-Wang-Freedman 2006]. There is an operator that commutes with 
the lattice Hamiltonian but obeys the Fibonacci fusion rule:

𝑊×𝑊 = 1 +𝑊
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Non-invertible topological lines in 1+1d

• The existence of certain non-invertible lines imply that the low-energy 
phase can NOT be trivially gapped. Similar consequences as ‘t Hooft
anomalies for ordinary global symmetries.
• Example: Tricritical Ising CFT perturbed by the subleading magnetic 

field 𝜎5. It explicitly breaks ℤ(, but preserves a non-invertible line:
𝑊×𝑊 = 1 +𝑊

The low energy phase is gapped with two-fold degenerate vacua
[Zamolodchikov 1990]. The degeneracy is not explained by any symmetry. 
Rather, it’s a consequence of the non-invertible line 𝑊 [Chang-Lin-SHS-Wang-
Yin 2018].
• More constraints on RG flows in 1+1d [Thorngren-Wang 2021].
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Non-invertible topological operators

• Constraints on 1+1d adjoint QCD from non-invertible lines [Komargodski-Ohmori-
Roumpedakis-Seifnashri 2020]. See also [Gomis’ talk].
• Bulk 2+1d interpretation of the non-invertible lines [Thorngren-Wang 2019, Gaiotto-

Kulp 2020].
• Categorical generalization of the Monster Moonshine [Lin-SHS 2019].
• Completeness of spectrum and the absence of certain topological 

operators [Rudelius-SHS 2020, Heidenreich-McNamara-Montero-Reece-Rudelius-Valenzuela 2021] [See 
Valenzuela’s review talk on Swampland].
• Algebraic higher symmetry [Wen 2018, Ji-Wen 2019, Kong-Lan-Wen-Zhang-Zheng 2020 x2].
• Topological operators in the algebraic approach to QFT [Casini’s talk].
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Conclusion

• We have discussed three generalizations of ordinary global 
symmetries:

1. Higher-form symmetries
2. Subsystem symmetries
3. Non-invertible topological operators

• 1 and 3 can arise naturally from gauging ordinary global symmetries.
• 2 arises naturally from seemingly innocent lattice models such as 

fractons. It leads to UV/IR mixing.
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Conclusion

• This more general perspective of global symmetry unifies many 
known phenomena into a coherent framework.
• Generalized global symmetries and their anomalies provide an invariant 

characterization of many topological phases of matter such as fractons.

• More importantly, they lead to new results that are otherwise 
obscured.
• Generalizations of the ‘t Hooft anomaly matching condition lead to nontrivial 

constraints on renormalization group flows.

• Many more to be explored! Collaboration between high energy 
physicists, condensed matter physicists, and mathematicians.
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Global symmetries and generalizations
Properties of 
symmetry op.

Ordinary 
symmetry

Higher-form 
symmetry

Subsystem 
symmetry

Non-invertible 
operator

Codimension
in spacetime

1 𝑞 + 1 𝑞 + 1 𝑞 + 1

Topological yes yes not completely
but conserved in time

yes

Fusion rule
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
group

𝑔%×𝑔* = 𝑔+
fusion ring

𝑎×𝑏 =7
,

𝑁-., 𝑐
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Thank you for listening!


