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Introduction & Motivation

Exact analytic solutions for spectral theory of quantum mechanical operators

are rare

-3 need non-perturbative tools

Fruitful guideline: think of QM geometrically [Balian-Parisi-Voros]

- make contact with

=% new non-perturbative tools

[Nekrasov, Shatashvili - Gaiotto, Moore, Neitzke - AG, Hatsuda, Marino, ... ]



Introduction & Motivation

Today: review some of the ideas behind the
approach to spectral theory and show a
concrete application to the study of black hole quasinormal

modes.



Introduction & Motivation

Black hole quasinormal modes {w, },-, (QNMs) ~resonances (dissipative

modes) encoding the response of the BH to a perturbation.
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Introduction & Motivation

An interesting aspect: QNMs can be used to determine mass,

angular momentum (and electric charge) of the final black hole.

Indeed, according to general relativity “black holes have no-hair”

(only 3 hairs):
angular momentum

mass ,
electric charge



Part 1: geometric/gauge theoretic approach to QM



An important role in the geometric approach to spectral theory is played

by the quantum periods.

For example, these are the building blocks determining the exact

quantization condition for the operator spectrum [Balian-Parisi-Voros].



Step 0: classical periods

operator .
classical curve

H(p,%), [p,x]=ih | H(p,x) = E

we focus only on operators whose classical curve coincides with a

Terminology: the operator is sometimes called



Example: modified Mathieu

H = — #%0? + 2A*cosh x —_— p?+2A%coshx = E

Seiberg-Witten curve of 4 dim
A =2SU(2) SYM

A: dynamical scale

E: coulomb branch parameter

Classical periods (Seiberg-Witten periods) :

HI(L‘O}B(E) = ﬂg px, E)dx where p(x,E) = \/E — 2A%cosh x
’ A,B



A first insight on the operator spectrum comes from the semiclassical Bohr-

Sommerfeld quantization => quantization of classical phase space volume

1
P Vol (E) ~ 2zh <n+5>, n=0,1.2,...

Vol (E) = {p? + 2A cosh(x) < E} = ITV(E)
cl B

5 E—2A° E—2A°
= 8/E+2A%| K ~E
E +2A? E +2A?

Exact quantization condition:  TIP(E) + 6(h) + O(e™""") = 2zh <n + %)
/ N\

perturbative (WKB) non-perturbative



Step 1: WKB periods

WKB Ansatz: w(x) = exp (%J Y(x, E, h)dx) with Y(x, E, A)dx = Z Q (x, E)h"dx

n=0

—h*0qp(x) + (2A%coshx — E) y(x) = 0

B A? sinh(x)
~ 2E — 4A2cosh(x)

Q, = p(x, E) =vVE—-2A%coshx , O,

WKB periods: HX},?B(h,E) = 2 (ﬂg Qn(xaE)dx> AN
n=0 A,B

\—\/—_J
~ n! ——> divergent series

—_  we need to resum it



The connection with gauge theory also persists at the WKB level.
For example we can read the of the underlying gauge

theory from the singularities in Borel plane of the WKB periods.

AG, Gu, Marino
AG, Hao, Neitzke

Borel plane of IT} 5 for the modified Mathieu at E=0

108

singularities: BPS spectrum of 4d
o | . SU(2) /" = 2 SYM at strong coupling
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Quantum periods

> non-perturbative, exact resummation of WKB periods

Such resummation can be performed thanks to 4 dim gauge theory tools.

GMN or ODE/IM TBA like techniques:

Gaiotto - Ito, Marifio, Shu - Emery - Hollands, Neitzke - AG, Gu,Marifio - Fioravanti, Gregori - Yan - Imaizumi-

Dumas, Neitzke- Wu - Ito, Kondo, Kuroda, Shu - AG, Hao, Neitzke - . ..

Self-dual phase (¢; = — ¢,)

Bonelli, AG, Tanzini- Novaes, Marinho, Lencses ,Casals, - AG, Gu,Marino -

Gavrylenko, Marshakov, Stoyan - Amado, Cunha, Pallante - Bershtein,

4 dim € background

/
Gavrylenko, AG -Cunha, Cavalcante - ...
\

Nekrasov-Shatashvili phase (e, =0)



In this approach the task of resuming the WKB period is mapped to the
task of computing the

In the example of modified Mathieu, the quantum B period reads

M(E,7) = —1 B Z (o (1459 Z1ogr (1 2 +0 F(a, A, 1)
h)y=—log| — |——1 lo — ) —1lo - — F(a, A,
B > P\ Az ) T\ 8 7 s 7

E=a’+ A0\F(a, A, h) (Matone relation)

F(a, A\, n) : Nekrasov-Shatashvili free energy corresponding to the
4 dim A =2 SYM SU(2) theory. This is exact in 72 (= the Q

background parameter)



Given the quantum periods, we can write the exact quantization for the

spectrum.

Example of modified Mathieu

1

(exact version of Bohr-Sommerfeld quantization)

Notation: Ilgz(E, h) = oFNS(E, h)



Many operators of interest in mathematical physics have been successtully

analysed in a similar way.

Here we focused on quantization condition, however this approach can

also be used to compute eigenfunctions and other objects in spectral

theory.

Next: apply these ideas to black hole perturbation theory and more

precisely to black hole quasinormal modes.



Part 2: BH quasinormal modes



Example:

Schwarzschild metric: static and spherically symmetric solution to the

Einstein equation in the vacuum

r r

-1
2M 2M
ds? = g, dx"'dx" = — <1 — —) dt? + <1 — —) dr? 4 r? (d92 + sin’ 0d¢2)

r — oo : Minkowski flat spacetime

r = 2M: black hole horizon

r = 0: black hole singularity




What happen it we add a “small” perturbation to this solution?

8w =&+ 08,

A

Schwarzschild metric ~ perturbation

It was shown by Regge and Wheeler that (linear) perturbations of the
Schwarzschild metric can be encoded in a simple second order differential

equation.



To derive such equation, it is convenient to exploit the symmetries of the

background metric and schematically decompose the perturbation as:

0 0 0 hy
0 o 0 hM| ... 0
Sg = 1 e " Y'sin@—Y., (0
s ; 0O 0 0 0 00 r0(0)
ho(r) hy(r) 0 O )

where Y, (0) ~ P,(cos@) are the spherical harmonics
f!\

Legendre polynomials



Then, substituting into Einstein equations we obtain the Regge-Wheeler equation:

2M
J (i’)—f (7’)— + o’ - V(I’)] O(r) = Ji)=1-—

where

(€ + 1 6 M
V(r)=f(r)< + )——>

2 r3

d
(@~ 7O () ~ [ @) )



The Regge-Wheeler equation is supplied by appropriate boundary conditions.

Tortoise coordinate: r* = r + 2M log <ﬁ — 1) — horizon @ r* - — o0

V(r*)

@r* - — 0 /1 "\ @r* - oo

(I)(r*) ~ e—ia)r* \ (I) (I/‘ *) N eia)r*

These boundary conditions are satisfied only for a discrete (complex) set of the

frequencies {w,},>( called black hole quasinormal modes.



We found that:

Regge-Wheeler Quantum SW curve for the

4 dim SU(2) theory with

equation

some algebra
J Nf = 3 flavours

+ previous works
by Zenkevich,
lto et al, Fiziev

et al,

Aminov, AG, Hatsuda



The dictionary we found is:

SYM with N; = 3 Schwarzwild BH
gauge coupling I\ —16iMw
1

Coulomb branch parameter E —U(C+ D) +8M W —

flavour masses m, -2 - 2iMw

—21Mw
ms3
\
Q background h=c¢ 1

~> By following the geometric/ gauge theoretic approach to spectral theory

we can write an exact quantization condition for BH quasinormal modes



Aminov, AG, Hatsuda

Exact quantization condition:

1
OFN(E, A, m, m,,ms, h) = 2r <n + 5), n=1223,"-

/

free A=—-16iMo E=-72(¢+1)+ 8M? 1
energy for the 4 dim SU(2) 4
Seiberg-Witten theory with my =2 —2iMw, my,=-2-2iMw

N; = 3 theory evaluated @: my = — 2iMo, h=1

~=> We can check that this agrees with numerical calculations of

{w,},>0 by Berti et al [https://pages.jh.edu/~eberti2/ringdown/ ]



Aminov, AG, Hatsuda

This was the example of the Schwarzschild BH. However the same approach

has also been generalised to other BHs.

For example to the Kerr solution. The gauge theory in this example is still the
SU(2) N; = 3 but the dictionary is different.

—> The extremal limit corresponds to the decoupling limitin SW
theory and itis described by the N, = 2 theory.

> The spheroidal eigenvalues can be expressed in a very explicit form:

these are given by the Nekrasov-Shatashvili free energy.

Some preliminary results indicate that this is the case also for asymptotically

(A)dS solutions. In this case the relevant gauge theory is the SU(2) N, = 4.



Recently this connection has been

—> extended to a larger class of gravity background

(Kerr-Newman BH, D3 branes, D1D5 circular fuzzball,..)

Bianchi, Consoli, Grillo, Morales

—3 used to compute the finite frequency greybody factor in a very explicit
form in terms of the 4 dim Nekrasov-Shatashvili free energy

Bonelli, lossa, Panea, Tanzini

—> applied to study stability in Kerr BH

Casals, Teixeira da Costa



Conclusion

The geometric/gauge theoretic approach to spectral theory
provides us with interesting new non-perturbative tools

which can be used to obtain new exact analytic results.

This approach has found a wide range of applications including

the study of black holes, which we just started to explore.



hank you!



