

UNIT OF EXCELLENCE DE MAEZTU

Coevolution dynamics of opinion and social network

Meghdad Saeedian

Raúl Toral

Maxi San Miguel

maxi@ifisc.uib-csic.es

M. Saeedian et al, New J. Phys. 22, 113001 (2020); Sci. Rep. 9, 1 (2019)

EXCELLENCE

MARÍA DE MAEZTU

Opinion dynamics

Agents (nodes) in a network of interactions

State of the node: opinion

Characteristics of the link: Existence, Weight, State of link: type of interaction (homophily...)

Step INo state of linksLinks are not persistent

Coupled dynamics of node states and network topology F. Vázquez, et al, Phys. Rev. Lett. <u>100,</u> 108702 (2008)

Step II Fixed network

Coupled dynamics of node states and link states

A. Carro et al, New Journal of Physics 18, 113056 (2016)

Step III Coupled dynamics of node states, link states and network topology

CO-EVOLUTION: Step I

Dynamics of Networks:

- 1. Dynamics OF network formation: Structure created by individual choices/actions
- 2. Dynamics ON the network: Actions of individuals constrained by the social network
- **3. Co-evolution of agents and network :** Circumstances make men as much as men make circumstances

...new research agenda in which the structure of the network is no longer a given but a variable.....explore how a social structure might evolve in tandem with the collective action it makes possible (Macy, Am. J. Soc. <u>97</u>, 808 (1991))

Final Goals:

Understanding dynamical processes of group formation / social differentiation

Opinion dynamics: Emergence of POLARIZATION and ECO-CHAMBERS

Early papers on co-evolution:

M. Zimmerman, V. M. Eguíluz and M. San Miguel Lecture Notes in Economics and Mathematical Systems N°503,73 (2001)

M. Zimmerman, V. M. Eguíluz and M. San Miguel, Phys. Rev. E. <u>69</u>, 065102-6 (2004)

F. Vázquez, et al, Phys. Rev. Lett. <u>100,</u> 108702 (2008)

Coevolving voter model: Non-persisting ties

Dynamics **ON** the network coupled with dynamics **Of** the network

Imitating vs Choosing neighbors

Co-evolving Voter Model

F. Vázquez, et al, Phys. Rev. Lett. 100, 108702 (2008)

Imitation

Choosing neighbors

Network Fragmentation Transition

Fragmentation due to

competition of time scales:

- evolution of the network(link dynamics)
- evolution **on** the network

(node state dynamics)

Critical value of plasticity p_c

EXCELLENCE

MARÍA DE MAEZTU

Opinion dynamics

Agents (nodes) in a network of interactions

State of the node: opinion

Characteristics of the link: Existence, Weight, State of link: type of interaction (homophily...)

Step INo state of linksLinks are not persistent

Coupled dynamics of node states and network topology F. Vázquez, et al, Phys. Rev. Lett. <u>100,</u> 108702 (2008)

 Step II
 Fixed network
 Coupled dynamics of node states and link states

 A. Carro et al, New Journal of Physics 18, 113056 (2016)

Step III Coupled dynamics of node states, link states and network topology

Step III: general co-evolution model

unsatisfying

satisfying

Dynamics towards satisfaction: i) Change of link state with probability *p* (local)

ii) Change of node state with probability 1-p (local)

iii) Link rewiring with prob. r once pair *e* has been selected for link update *(nonlocal)* $a \bigcirc \cdots & \bigcirc p \\ e \bigcirc (1-p)/2 \\ (1-p)/2 \\ p \\ (1-p)/2 \\ (1-p)$

Absorbing Transition

-X-

Random network mean degree μ

Parameters: N, µ, r, p

Variables: Link densities { ρ_a , ρ_b , ρ_c , ρ_d , ρ_e , ρ_f }

Absorbing state: No unsatisfying pairs $\rho_a = \rho_c = \rho_e = 0$

<u>Absorbing transition:</u> Dynamically active state \Leftrightarrow Absorbing frozen configuration Rate equation analysis $N \rightarrow \infty$

Dynamically active state: Non vanishing ρ_a , ρ_b , ρ_c , ρ_d , ρ_e , ρ_f as functions of ρ_e

r=1 $\implies \rho_a = \rho_c = \rho_f = 0$. No negative links

Absorbing frozen state:: $\rho_a = \rho_c = \rho_e = 0$ (ρ_b, ρ_d, ρ_f) arbitrary

Absorbing Transition line:

$$p_{\rm c}(\mu,r) = 1 - rac{3-2r}{(2-r)(\mu-1)}$$
. ho_f at criticality $ho_f^{\rm c}(r) = rac{1-r}{2-r}$.

FISC UNIT OF EXCELLENCE MARÍA DE MAEZTU

Absorbing Transition

*

$$p_{\rm c}(\mu,r) = 1 - \frac{3-2r}{(2-r)(\mu-1)}$$

Active phase:

Finite size fluctuations take the system to an absorbing state

r=0
$$\langle \tau \rangle \sim e^{\alpha N}$$
:
 $\langle \tau \rangle = \alpha_1 (\alpha_2 N)^r e^{(1-r)\alpha_3 N}$
r=1 $\langle \tau \rangle \sim \beta N$.

Adaptive network (rewiring):

Reduces exponentially the lifetime of the active unsatisfying state

Topological transitions *

For finite N absorbing satisfying state is always reached unsatisfying *a* \bigcirc ---- \bigcirc satisfying $\rho_a = \rho_c = \rho_e = 0$ unsatisfying satisfying **FRAGMENTED** $\rho_f = 0, \rho_b \neq 0, \rho_d \neq 0$

- satisfying f o-----O
 - unsatisfying

 $p = 0.80, \mu = 12, r = 1$

$$\rho_a = \rho_c = \rho_e = 0$$

FRAGMENTED: $\rho_f = 0, \ \rho_b \neq 0, \ \rho_d \neq 0$ CONNECTED: i) Consensus: $\rho_f = 0, \ \rho_b = 0 \text{ or } \rho_d = 0$

Snapshot of dynamically active state

Finite size absorbing configuration

a \bigcirc ---- \bigcirc

 $p = 0.30, \mu = 3, r = 1$

unsatisfying

For finite N absorbing satisfying state is reached

$$\rho_a = \rho_c = \rho_e = 0$$

 $p = 0.90, \mu = 12, r = 1$

Topological transitions r<1 *

Active as $N \rightarrow \infty$

22 26 30

14 18

μ

Split

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

2

6

p=0.9

0.8

0.2

0

(N) solution (N) s

p=0.9, µ=10

p=0.9, µ=8

p=0.9, µ=6

 $p=0.9, \mu=4$

10

12

10

a.0.5

0.8

0.6

0.4

0.2

UNIT OF EXCELLENCE

r=0, $\mu_{\rm split} \simeq 22$

2

4 Ng

6

0.8

0.4

0.2

p=0.9, µ=10

p=0.9, µ=16

p=0.9, µ=22

8

10

0.6 r=0.9

Active (unsatisfying) - Frozen (satisfying) transition

p= rate of change of link state vs. node state global unsatisfaction in spite of local mechanism of convergence towards satisfaction for small p

r=rewiring Exponential reduction of lifetime of unsatisfying state

Final Configurations:

*** SOCIAL POLARIZATION and ECHO-CHAMBERS:** Two-Group and Fragmentation

-Globalization (large connectivity) leads to Two-Group $\mu > \mu_{split}$ Smaller connectivity needed in adaptive networks (rewiring)

-Negative (heterophilic) interactions promote polarization

-Fragmentation is a manifestation of criticality

CONSENSUS only possible with rewiring:

Needs choosing positive satisfactory relations opting out of disagreement with our positive relations:

UNIT OF EXCELLENCE DE MAEZTU

Coevolution dynamics of opinion and social network

Meghdad Saeedian

Raúl Toral

Maxi San Miguel

maxi@ifisc.uib-csic.es

M. Saeedian et al, New J. Phys. 22, 113001 (2020); Sci. Rep. 9, 1 (2019)

