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Nature of the v = 5/2 state

Magnetoroton: a spin-2 excitation
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Lowest Landau level limit
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Lowest Landau level limit
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Microscopic theory

s = |did>x (i, - ia L@ — iy + 22y
x | w'(0, — iAgy | (0, — APy "+ —y'yw
] 2m 2m

1 d 2 2 T T
-5 td“xdyy' )y (y)Vx — y)w(y)y(x)

Background magnetic field B # 0

1
g = 2:Schroedinger equation has N, = gy szxB zero modes
T

Problem: what is the effective theory of the LLL?

lim Z[Ay, A] = ?
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Chern-Simons theory

filling factor

number of electrons

o degeneracy of a LL

® For gapped states, EFT below the gap is typically a
CS theory, i.e., for v = 1/3 state
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® More difficult questions: gapless or states with
small gap (< natural energy scale)
for example v = 1/2 or 1/4



EFT near half filling

® Near half-filling the low-energy effective theory is
that of a “Dirac composite fermion”
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Particle-vortex duality:  pf =

Half-filled Landau level of electrons = Fermi liquid of CFs
FQHE with

An experimental realized example of duality
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Nature of v = 5/2 state

v = 5/2:the only even-dominator gapped quantum
Hall state

a half-filled Landau level v = 2+%

Most well-known proposal: Moore-Read (Pfaffian)
alternative: anti-Pfaffian state

From the point of view of the composite fermion
theory: BCS pairing of composite fermions



Pairing channels

Simplest pairing: “‘s-wave” <8aﬂl//awﬁ> #* 0
corresponds to the PH-Pfaffian state

“d-wave” pairing channels
(e, (0, iﬁy)zl//ﬁ) # 0: Pfaffian and anti-Pfaffian

Numerical simulations: favor anti-Pfaffian or Pfaffian

but recent experiments prefer PH-Pfaffian (edge
thermal conductivity)

Tension between numerics and experiment has not
been resolved



Magnetoroton

® | owest neutral excitation of a gapped FQH state is
the magnetoroton

® studied variationally by Girvin, MacDonald, Platzman
| 986, also in numerics
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® Q:what operator creates the magnetoroton!?

® Magnetoroton: pole in the density-density
correlation function, but the residue at the pole

goes to 0 at small g

q4

w* — A*(q)
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® We will now see that g* is a consequence of a
higher-rank conservation law
(gauge invariance requires only g)



Conservation laws

® Conservation of particle number and momentum

()tp+v f 0

o(mj;) + 0,1y = (j X B);

m = 0: force balance j~ =0T

p—+ 0°T =0

a higher-rank symmetry



Higher-rank symmetry

® A FQH system in fixed background B field can be
coupled to Ay and g;

® ||| physics invariant under volume-preserving diff
glj — glj T algj + ajg’ gi — ‘g'l.jaj/1

AO_)AO_l_/{

® The Ward-Takahashi identity is the higher-rank

conservation law d,p + 0°T = 0 Yi-Hsien Du, Umang
Mehta, Dung Nguyen, DTS, 2103.09826



Operator creating
magnetoroton

® p is not efficient in creating magnetoroton with
q=0

® The operators that can create g = (0

magnetoroton is the stress tensor
I.. T

7z

® spin of the magnetoroton is either 2 or -2

® which one!?



® p = |/3 state: strong suppression of spin-(-2)
spectral density compared to that of spin-2
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A spectral sum rule

dx T, (X)
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If the integral is dominated by one mode:
& > 1:spin-2
& < 1:spin-(-2)

Golkar, Dung Nguyen, DTS, 2013



Polarized Raman scattering

\
i

can in principle be used to determine the spin
of the magnetoroton experimentally

Dung Nguyen and DTS, 2101.02213
also Haldane, Rezayi, Kun Yang



Distinguishing v = 5/2 states
by polarized Raman scattering

® Argument based on sum rule suggests that

e Pfaffianstate & =3: s =2

e anti-Pfaffanstate S =—1;: s=-2
® PH-Pfaffian & = l:boths=2ands=—2
magnetorotons

® Polarized Raman scattering: a bulk probe that
complements boundary probes



SSF and Haldane bound

o Jtatic structure factor S(g) = Jeiqx(p(O,x)p(0,0))

o S(g) = s5,q" + -

® Haldane bound:

shift
/
>S S -1
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® saturated in Dirac CF theory near v = 1/2



Jain’s states near v = 1/4

1

e Nearr = 7

: CF = electron + 4 flux quanta

e Effective field theory: CF coupled to dynamical CS
gauge field

® Fails to satisfy the Haldane bound!




Solution to the puzzle

To solve the problem with the Haldane bound for
Jain’s states near v = 1/4, one requires at least one
additional magnetoroton

For v = N/(4N £ 1): one magnetoroton with
energy O(1/N), one with energy O(1)

opposite chiralities for v = N/(4N — 1), the same
chirality for v = N/(4N + 1)

can be in principle verified numerically and
hopefully, experimentally

Dung Nguyen, DTS, 2105.02092



Conclusion

FQHE is an important theoretical problem
Nature of v = 5/2 state: still an open question

g = 0 magnetoroton has spin 2 or —2 depending
on the QH state

Polarized Raman scattering can distinguish different
FQH states, in particular different v = 5/2
candidates

Extra magnetoroton mode(s) at and near v = 1/4



Thank you



