Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
	0000000		00000000	0000	

Statistical biases on perception of self and others: From model to experiments

Guillaume Deffuant Thibaut Roubin

Inrae - Laboratoire d'Ingéniérie des Systèmes Complexes

October 2021

•••• ••• •••••• •••• •••• •••	Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
	•00					

Positive bias on self-opinion because of self-enhancement

- Most of people tend to seek out and accept positive feedbacks about themselves and avoid or reject negative ones (Campbell et al., 1999).
- As a result, we tend to over-evaluate ourselves as attested by a lot of experiments (Dunning et al., 2004).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
000					

Positive bias on self-opinion without self-enhancement

- A recent model of agents with opinions about each others suggests the existence of a positive bias on self-opinions without self-enhancement (Deffuant et al. 2018).
- The analysis shows the existence of a negative bias on the opinion about others.
- These biases have not been detected by social scientists.

Introduction 00●	Model 0000000	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion 0
			·		

Main points of this presentation

- A new analysis of the model, showing that the biases hit the agents differently according to their status to the detriment of low status agents?
- A first step of experimental work confirming the existence of the specific positive bias on self-opinion.

000 000000 000 0000000 0000 0	Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
		•000000				

Simple model focusing on effect of interactions

• Each agent is defined by a self-opinion and an opinion about all the other agents

41	42	43	44
31	32	33	34
21	22	23	24
11	12	13	14

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Introduction 000	Model o●ooooo	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion O
Pair int	eraction				

• Agents 1 and 2 are chosen.

- Agent 2 opinions *a*₂₂ and a_{21} influence agent 1 opinions a_{12} and a_{11} . And vice-versa.
- Agent 1 influences agent 2 similarly.

41	42	43	44
31	32	33	34
21	22	23	24
↓ 11	12	13	14

Introduction 000	Model oo●oooo	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion 0
Pair int	eraction				

• Agents 2 and 4 are chosen.

- Agent 4 opinions *a*₄₄ and a_{42} influence agent 1 opinions a_{24} and *a*₂₂.
- Agent 2 influences agent 4 similarily.

41	42	43	44
31	32	33	34
21	22	23	24
11	12	13	14

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
000	ooo●ooo	000		0000	0
Noisya	ttraction				

• Influence of a_{21} on a_{11} :

$$\mathsf{a}_{11}(t+1) = \mathsf{a}_{11}(t) + rac{\mathsf{h}_{12}(t)}{\mathsf{a}_{21}(t)} + heta - \mathsf{a}_{11}(t))$$

• θ is a uniform noise in $[-\delta, \delta]$ • $h_{12}(t) = \frac{1}{1 + \exp\left(\frac{a_{11}(t) - a_{12}(t)}{\sigma}\right)}$ is the influence of 2 on 1. 2 0.8 0.6 h_{12} 4 0.2 0.0 -2 -1 0 1 2 $a_{11} - a_{12}$

Introduction Model Positive bias Moment approximation Experiment Conclusion / Discussion

Positive drift of opinions without gossip

Matrix after 1 million iterations (starting with all opinions equal 0)

Red curve: average opinion. Blue curves: reputations (average columns).

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
	0000000				

Pair interaction with gossip

- If gossip is activated, agent 2's opinion a₂₄ about randomly chosen agent 4 influences agent 1's opinion a₁₄.
- Agent 1 influences agent 2 similarly.

41	42	43	44
31	32	33	34
21	22	23	24
11	12	13	14

Negative drift of opinions with gossip

Matrix after 1 million iterations (starting with all opinions equal 0)

Red curve: average opinion. Blue curves: reputations.

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
000	0000000	●00		0000	0

Positive bias on self-opinion: simplified case

• Assume $a_{21}(1) = a_{11}(1) + \delta$, then: $a_{11}(2) = a_{11}(1) + \delta h(a_{11}(1))$

(日) (四) (日) (日) (日)

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
		000			

Positive bias on self-opinion: simplified case

- Assume $a_{21}(2) = a_{11}(2) \delta$,
- then: $a_{11}(3) = a_{11}(2) - \delta h(a_{11}(2))$
- Moreover: $a_{11}(3) a_{11}(1) = \delta(h(a_{11}(1)) h(a_{11}(2)))$
- h(a₁₁(1)) > h(a₁₁(2)) as h is decreasing.

Introduction 000	Model 0000000	Positive bias 00●	Moment approximation	Experiment 0000	Conclusion / Discussion 0			
Conoralizations								

- The effect is the same with the sequence $a_{21}(1) = a_{11}(1) \delta$, $a_{21}(2) = a_{11}(2) + \delta$
- The same mechanism is at work on the opinion about others except that *h* is growing when the opinion about the other increases, therefore the bias is negative.
- This analysis is not elaborate enough to determines which bias dominates during interactions and to explain the patterns.

Approximation of average opinions: Principle

- We consider opinion offsets: $x_{ij}(t) = a_{ij}(t) a_{ij}(0)$
- We average the equations of opinion change such as:

$$x_{ii}(t+1) = x_{ii}(t) + h_{ij}(t)(x_{ji}(t) - x_{ii}(t) + \theta(t)),$$

over the noise on the influence and over the randomness of the interacting pairs.

• We develop the influence function around its average:

$$h_{ij}(t) = \overline{h_{ij}}(t) + \overline{h_{ij}'}(t)(x_{ii}(t) - x_{ij}(t) - \overline{x_{ii}}(t) + \overline{x_{ji}}(t))$$

Introduction	Model	Positive bias	Moment approximation	Experiment	Conclusion / Discussion
000	0000000	000		0000	0

Evolution of average opinions without gossip

• Evolution of average self-opinion of *i*:

$$egin{aligned} \overline{x_{iii}}(t+1) &= \overline{x_{iii}}(t) + rac{2}{N_c}\sum_{j
eq i}\left(\widehat{h_{ij}}(t)\left(\overline{x_{ji}}(t) - \overline{x_{ii}}(t)
ight) + \overline{h_{ij}'}(t)\left(\overline{x_{ii}(t).x_{ji}(t)} - \overline{x_{ii}^2}(t)
ight)
ight) \end{aligned}$$

• Evolution of average opinion of *j* about *i*:

$$\overline{x_{ji}}(t+1) = \overline{x_{ji}}(t) + \frac{2}{N_c} \left(\widehat{h_{ji}}(t) \left(\overline{x_{ii}}(t) - \overline{x_{ji}}(t) \right) + \overline{h_{ji}'}(t) \left(\overline{x_{ji}^2}(t) - \overline{x_{ii}(t)} \cdot \overline{x_{ji}}(t) \right) \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example: 10 agents with initial opinions in [-0.6, 0.6]

Lines: moment approximation, points: average of 10 M simulations

 Introduction
 Model
 Positive bias
 Moment approximation
 Experiment
 Conclusion / Discussion

 000
 000000
 000
 000000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Example: 10 agents with initial opinions in [-0.6, 0.6]

$$a_{ii}(0) = -0.47 \text{ (status = 2)} \qquad a_{ii}(0) = -0.6 \text{ (status = 1)}$$

$$a_{ii}(0) = -0.6 \text{ (status$$

Lines: moment approximation, points: average of 10 M simulations

First order equilibrium opinion

The equilibrium opinion e_i(t) is weighted average of the opinions about i:

$$e_i(t) = \frac{1}{1 + S_i(t)} \left(\overline{x_{ii}}(t) + \sum_{j \neq i} \frac{\widehat{h_{ij}}(t)}{\widehat{h_{ji}}(t)} \overline{x_{ji}}(t) \right),$$

with
$$S_i(t) = \sum_{j \neq i} \frac{h_{ij}(t)}{\widehat{h_{ji}(t)}}$$
.

• The trajectory of the equilibrium opinion $e_i(t)$ reflects the trajectories of the opinions about *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion 0
Evolutio	n				

• The evolution of $e_i(t)$ includes only second order terms:

$$\begin{split} e_i(t+1) &= e_i(t) \\ &+ \frac{2}{N_c(1+S_i(t))} \sum_{i \neq j} \overline{h'_{ji}}(t) \left(\overline{x_{ii}(t).x_{ji}(t)} - \overline{x_{ii}^2}(t) \right. \\ &+ \frac{\widehat{h_{ij}}(t)}{\widehat{h_{ji}}(t)} \left(\overline{x_{ji}^2}(t) - \overline{x_{ii}(t).x_{ji}(t)} \right) \right). \end{split}$$

- With or without gossip, the weight of the negative bias $\frac{\widehat{h_{ij}}(t)}{\widehat{h_{ji}}(t)}$ is larger when *i* is of low status;
- With gossip, the negative bias $\overline{h'_{ji}}(t)\left(\overline{x^2_{ji}}(t) \overline{x_{ii}(t).x_{ji}(t)}\right)$ is larger when *i* is of low status;

Slope of $e_i(t)$ at t = 800 when inequalities vary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへの

Slope of $e_i(t)$ at t = 800 when inequalities vary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion o

Explanation of the patterns

Gossip (k = 5).

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment ●000	Conclusion / Discussion 0			
The experiment								

- 1500 participants recruited by a specialised firm
- Online questionnaire:
 - We request the participant to complete a specific task
 - The participants receive a series of 4 evaluations about their performance (2 are $a_{ii} + \delta$ (positive evaluations) and 2 are $a_{ii} \delta$ (negative evaluations)

• After each evaluation, the participants express their self-evaluation.

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 0●00	Conclusion / Discussion 0
The tas	k				

• 3 pictures are displayed for 5 seconds, and for each, we ask "What percentage of green do you see in the image ?" to the participant

• The task is : unusual hence the participants have no idea of their likely performance at it, so they can believe fake evaluations.

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 00●0	Conclusion / Discussion 0

Anchor and first self-evaluation

- For each participants, we collect 4 triples: (a_t, f_t, a_{t+1}) , with $f_t = a_t \pm \delta$.
- By hypothesis $a_{t+1} a_t = \pm h(a_t)\delta$
- We perform two regressions $a_{t+1} a_t$ by a_t :
 - for $f_t = a_t + \delta$, providing an approximation of $h_+(a_t)$
 - for $f_t = a_t \delta$, providing an approximation of $h_-(a_t)$

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 000●	Conclusion / Discussion

Results for High trust, high anchor

- The influence is decreasing.
- Bias because from decreasing influence S = 1.7 (bigger than the bis from self-enhancement E = 0.98).
- As a result, the total bias is 2.77 (percentages of δ)

(日)

Introduction 000	Model 0000000	Positive bias	Moment approximation	Experiment 0000	Conclusion / Discussion
Conclusi	on				

- Main results:
 - The moment approximation explains how the biases interact and explains the patterns
 - The experiment confirms the existence of the bias on self-opinion from decreasing influence.
- Perspectives:
 - Extending the model to larger populations and introducing other processes (vanity, group identity) and networks.
 - Performing lab experiments checking the existence of the negative bias on opinions about others.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00