Statistical biases on perception of self and others: From model to experiments

Guillaume Deffuant Thibaut Roubin

Inrae - Laboratoire d’Ingénierie des Systèmes Complexes

October 2021
Positive bias on self-opinion because of self-enhancement

- Most of people tend to seek out and accept positive feedbacks about themselves and avoid or reject negative ones (Campbell et al., 1999).
- As a result, we tend to over-evaluate ourselves as attested by a lot of experiments (Dunning et al., 2004).
Positive bias on self-opinion without self-enhancement

- A recent model of agents with opinions about each other suggests the existence of a positive bias on self-opinions without self-enhancement (Deffuant et al. 2018).
- The analysis shows the existence of a negative bias on the opinion about others.
- These biases have not been detected by social scientists.
Main points of this presentation

- A new analysis of the model, showing that the biases hit the agents differently according to their status to the detriment of low status agents?
- A first step of experimental work confirming the existence of the specific positive bias on self-opinion.
Simple model focusing on effect of interactions

- Each agent is defined by a self-opinion and an opinion about all the other agents.
Pair interaction

- Agents 1 and 2 are chosen.
- Agent 2 opinions a_{22} and a_{21} influence agent 1 opinions a_{12} and a_{11}. And vice-versa.
- Agent 1 influences agent 2 similarly.
Pair interaction

- Agents 2 and 4 are chosen.
- Agent 4 opinions a_{44} and a_{42} influence agent 1 opinions a_{24} and a_{22}.
- Agent 2 influences agent 4 similarly.

<table>
<thead>
<tr>
<th></th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Noisy attraction

- Influence of a_{21} on a_{11}:

$$a_{11}(t + 1) = a_{11}(t) + h_{12}(t)(a_{21}(t) + \theta - a_{11}(t))$$

- θ is a uniform noise in $[-\delta, \delta]$.
- $h_{12}(t) = \frac{1}{1 + \exp\left(\frac{a_{11}(t) - a_{12}(t)}{\sigma}\right)}$ is the influence of 2 on 1.
Positive drift of opinions without gossip

Matrix after 1 million iterations (starting with all opinions equal 0)

Pair interaction with gossip

- If gossip is activated, agent 2’s opinion a_{24} about randomly chosen agent 4 influences agent 1’s opinion a_{14}.
- Agent 1 influences agent 2 similarly.
Negative drift of opinions with gossip

Matrix after 1 million iterations (starting with all opinions equal 0)

Positive bias on self-opinion: simplified case

Assume $a_{21}(1) = a_{11}(1) + \delta$, then:

$a_{11}(2) = a_{11}(1) + \delta h(a_{11}(1))$
Positive bias on self-opinion: simplified case

- Assume $a_{21}(2) = a_{11}(2) - \delta$,
- then: $a_{11}(3) = a_{11}(2) - \delta h(a_{11}(2))$
- Moreover: $a_{11}(3) - a_{11}(1) = \delta(h(a_{11}(1)) - h(a_{11}(2)))$
- $h(a_{11}(1)) > h(a_{11}(2))$ as h is decreasing.

![Diagram](image.png)
The effect is the same with the sequence \(a_{21}(1) = a_{11}(1) - \delta \), \(a_{21}(2) = a_{11}(2) + \delta \).

The same mechanism is at work on the opinion about others except that \(h \) is growing when the opinion about the other increases, therefore the bias is negative.

This analysis is not elaborate enough to determine which bias dominates during interactions and to explain the patterns.
Approximation of average opinions: Principle

- We consider opinion offsets: $x_{ij}(t) = a_{ij}(t) - a_{ij}(0)$
- We average the equations of opinion change such as:

$$x_{ii}(t+1) = x_{ii}(t) + h_{ij}(t)(x_{ji}(t) - x_{ii}(t) + \theta(t)),$$

over the noise on the influence and over the randomness of the interacting pairs.
- We develop the influence function around its average:

$$h_{ij}(t) = \overline{h}_{ij}(t) + \overline{h'}_{ij}(t)(x_{ii}(t) - x_{ij}(t) - \overline{x}_{ii}(t) + \overline{x}_{ji}(t))$$
Evolution of average opinions without gossip

- Evolution of average self-opinion of i:

$$\bar{x}_{ii}(t + 1) = \bar{x}_{ii}(t) + \frac{2}{N_c} \sum_{j \neq i} \left(\hat{h}_{ij}(t) (\bar{x}_{ji}(t) - \bar{x}_{ii}(t)) \right) + h'_{ij}(t) \left(\bar{x}_{ii}(t) \cdot \bar{x}_{ji}(t) - \bar{x}_{ii}^2(t) \right)$$

- Evolution of average opinion of j about i:

$$\bar{x}_{ji}(t + 1) = \bar{x}_{ji}(t) + \frac{2}{N_c} \left(\hat{h}_{ji}(t) (\bar{x}_{ii}(t) - \bar{x}_{ji}(t)) \right) + h'_{ji}(t) \left(\bar{x}_{ij}^2(t) - \bar{x}_{ii}(t) \cdot \bar{x}_{ji}(t) \right).$$
Example: 10 agents with initial opinions in \([-0.6, 0.6]\)

\[a_{ii}(0) = 0.6 \text{ (status = 10)} \]
\[a_{ii}(0) = 0.47 \text{ (status = 9)} \]

Lines: moment approximation, points: average of 10 M simulations
Example: 10 agents with initial opinions in $[-0.6, 0.6]$
First order equilibrium opinion

- The equilibrium opinion $e_i(t)$ is weighted average of the opinions about i:

$$e_i(t) = \frac{1}{1 + S_i(t)} \left(\bar{x}_{ii}(t) + \sum_{j \neq i} \frac{\hat{h}_{ij}(t)}{h_{ji}(t)} x_{ji}(t) \right),$$

with $S_i(t) = \sum_{j \neq i} \frac{\hat{h}_{ij}(t)}{h_{ji}(t)}$.

- The trajectory of the equilibrium opinion $e_i(t)$ reflects the trajectories of the opinions about i.
The evolution of $e_i(t)$ includes only second order terms:

$$e_i(t + 1) = e_i(t) + \frac{2}{N_c(1 + S_i(t))} \sum_{i \neq j} \overline{h'_{ji}}(t) \left(\overline{x_{ii}(t) . x_{ji}(t)} - \overline{x_{ii}^2}(t)
ight) \left(x_{ji}(t) - \overline{x_{ii}(t) . x_{ji}(t)}
ight).$$

- With or without gossip, the weight of the negative bias $\frac{\overline{h_{ij}}(t)}{h_{ji}(t)}$ is larger when i is of low status;
- With gossip, the negative bias $\overline{h'_{ji}}(t) \left(\overline{x_{ji}^2}(t) - \overline{x_{ii}(t) . x_{ji}(t)} \right)$ is larger when i is of low status;
Slope of $e_i(t)$ at $t = 800$ when inequalities vary

High status agents (6 to 10)

No Gossip ($k = 0$) and Gossip ($k = 1$)
Slope of $e_i(t)$ at $t = 800$ when inequalities vary

Low status agents (1 to 5)

No Gossip ($k = 0$) vs. Gossip ($k = 1$)
Explanation of the patterns

no gossip \((k = 0)\)

Gossip \((k = 5)\).
The experiment

- 1500 participants recruited by a specialised firm
- Online questionnaire:
 - We request the participant to complete a specific task
 - The participants receive a series of 4 evaluations about their performance (2 are $a_{ii} + \delta$ (positive evaluations) and 2 are $a_{ii} - \delta$ (negative evaluations))
 - After each evaluation, the participants express their self-evaluation.
The task

- 3 pictures are displayed for 5 seconds, and for each, we ask "What percentage of green do you see in the image?" to the participant.

- The task is: unusual hence the participants have no idea of their likely performance at it, so they can believe fake evaluations.
Anchor and first self-evaluation

- For each participants, we collect 4 triples: \((a_t, f_t, a_{t+1})\), with \(f_t = a_t \pm \delta\).
- By hypothesis \(a_{t+1} - a_t = \pm h(a_t)\delta\)
- We perform two regressions \(a_{t+1} - a_t\) by \(a_t\):
 - for \(f_t = a_t + \delta\), providing an approximation of \(h_+(a_t)\)
 - for \(f_t = a_t - \delta\), providing an approximation of \(h_-(a_t)\)
Results for High trust, high anchor

- The influence is decreasing.
- Bias because from decreasing influence $S = 1.7$ (bigger than the bias from self-enhancement $E = 0.98$).
- As a result, the total bias is 2.77 (percentages of δ).
Conclusion

- **Main results:**
 - The moment approximation explains how the biases interact and explains the patterns
 - The experiment confirms the existence of the bias on self-opinion from decreasing influence.

- **Perspectives:**
 - Extending the model to larger populations and introducing other processes (vanity, group identity) and networks.
 - Performing lab experiments checking the existence of the negative bias on opinions about others.