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Fractal Cities

Mandelbrot Set

Shenyang and Fushun, China - population: 10M



Fractal Cities

Box counting method:

Ribeiro, Rev. Morf. Urb. (2020)



Fractal Cities

Box counting method:

Ribeiro, Rev. Morf. Urb. (2020)



Fractal Cities

Box counting method:

Ribeiro, Rev. Morf. Urb. (2020)



Fractal Cities

Box counting method:
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Fractal Cities
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Fractal Cities

Molinero & Thurner, Interface (2021).



Fractal Cities
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Growth Domestic Product (GDP)
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Growth Domestic Product (GDP)

" Southeastern Brazil, year=1999
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Mobile Phones Contacts
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Number of Petrol Stations
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Fig. 4. Double-logarithmic representation of the number of petrol stations as a function of the population size of cties of France,
Germany, Metherlands and Spain, after a logarithmic binning method has been applied. The solid lines correspond to the respective linear

regression and the dashed lines indicate the slope 1. Z ) Zhang et al, ISPRS (2015) .
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Fig 4. Exponents values for different urban indicators in the Brazilian urban system. Each dot represents the scaling exponent related to the best-fit
line from the OLS regression of the population against the studied variable; vertical line segments represent 93% confidence interval (CI) of those
regressions; colors are based on Bettencourt's classification; the horizontal black line indicates linear relationship.

https:/doi.org/10.1371/journal. pone.0204574.g004
Meirelles et al., Plos One (2018)
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Scaling in Biology
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Scaling Economy
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West, Brown & Enquist Theory

= fractal network distribution;
* terminal units (e.g. cells and capillaries)
do not vary with the size of organisms;

* mnatural selection and energy minimization.

West,Brown & Enquist, Science (1997).



Oz tlase ] =



Scaling Economy

* Cities : ~ 15% % Y:YONg

3
* Biology: ~ 25% B=B,M"*

(*) for a small increase in size



Urban scaling

Intra-urban
processes
Required Required Extreme
human factors values
Interactions Gomez-Lievano Gomez-Lievano
\ et al. 2016 et al. 2021
Cross Collabo- Gravity Infrastructure
section rations models geometry
Bettencourt Yang et al. ‘ Molinero & Thurner
Euclidean Social
distance distance
Yakubo et al. Arbesman et al.
F.Ribeiro et al.

Inter-urban
processes
Diffusion of Aggregate Attractiveness
technologies scaling token
Pumain et al, H.Ribeiro et al. Altmann et al.

Ribeiro & Rybsky, in preparation (2021).



Gravity Models to explain urban scaling

* Ty : euclidean distance between two individuals: ¢ and j

p ( I”l-]-) :  propability they are conected;

Conection implies socio-economic production;

Hiphotesis:

Ribeiro et al, Royal Society Open science (2017).



Empirical Evidences

Figure 2: The Distribution of Email Distances . oo . :
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Empirical Evidences
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Socio-economic production

Y~N [ p(7)p(F)d7

Ribeiro et al, Royal Society Open science (2017).
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Infrastructure: Number of Amenities
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Molinero & Thurner Model

Amenities are
along (attached)

to the streets

Molinero & Thurner, Interface (2021).



Molinero & Thurner Model
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Molinero & Thurner Model
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Molinero & Thurner Model

Amenities are
along (attached)

to the streets

Molinero & Thurner, Interface (2021).
Ribeiro & Rybski , in preparation (2021)



Molinero & Thurner Model

Ribeiro et al.
Amenities are Model:

along (attached)
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Molinero & Thurner, Interface (2021).
Ribeiro & Rybski , in preparation (2021)



Molinero & Thurner Model

Ribeiro et al.
Amenities are Model:

along (attached)
Dinfra y
to the streets

>  L~N" ~ P~N? | p~N"

Equivalence between

Molinero & Thurner, Interface (2021).
Ribeiro & Rybski , in preparation (2021)

the models implies:
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Abstract

Does the scaling relationship between population sizes of cities with urban metrics like eco-
nomic output and infrastructure (transwversal scaling) mirror the evolution of individual cities
in time (longitudinal scaling)? The answer to this question has important policy implications,
but the lack of suitable data has so far hindered rigorous empirical tests. In this paper, we
advance the debate by looking at the evolution of two urban variables, GDP and water net-
work length, for over 5500 cities in Brazil. We find that longitudinal scaling exponents are
city-specific. However, they are distributed around an average value that approaches the
transversal scaling exponent provided that the data is decomposed to eliminate external fac-
tors, and only for cities with a sufficiently high growth rate. We also introduce a mathematical
framework that connects the microscopic level to global behaviour, finding good agreement
between theoretical predictions and empirical evidence in all analyzed cases. Our results
add complexity to the idea that the longitudinal dynamics is a micro-scaling version of the
transversal dynamics of the entire urban system. The longitudinal analysis can reveal differ-
ences in scaling behavior related to population size and nature of urban variables. Our
approach also makes room for the role of external factors such as public policies and devel-
opment, and opens up new possibilities in the research of the effects of scaling and contex-
tual factors.
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A model of urban scaling
laws based on distance-
dependent interactions

Fabiano L. Ribeiro’, Joao Meirelles?, Fernando
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CRN, 0000-0001-6783-6695

Socioeconomic related properties of a city grow faster than
a linear relationship with the population, in a log-log plot,
the sccalled superlmear scaling. Conversely, the larger a city,
the more efficient it is in the use of its infrastructure, leading
to a sublinear scaling on these variables. In this work, we
addressed a simple explanation for those scaling laws in cities
based on the interaction range between the cifizens and on the
fractal properties of the cities. To this purpose, we introduced
a measure of social potential which captured the influence of
social interaction on the economic performance and the benefits
of amenities in the case of infrastructure offered by the city.
We assumed that the population density depends on the fractal
dimension and on the distance-dependent interactions between
individuals. The model suggests that when the city interacts
as a whole, and not just as a set of isolated parts, there is
improvement of the socioeconomic indicators. Moreover, the
bigger the interaction range between citizens and amenities,
the bigger the improvement of the socio-economic indicators
and the lower the infrastructure costs of the city. We addressed
how public policies could take advantage of these properties
to improve cities development, minimizing negative effects.
Furthermaore, the model predicts that the sum of the scaling
exponents of social-economic and infrastructure variables are 1,
as observed in the literature. Simulations with an agent-based
model are confronted with the theoretical approach and they
are compatible with the empirical evidences.
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