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Introduction

• Social Interactions: An almost unavoidable part of living in a
society. It is through social interactions that information spreads.
• Complex Networks: Essentially a way of representing and studying
systems by breaking them down to components and connections.
• Opinion Dynamics: Social interactions are not homogeneous nor
static, people tend to have different opinions and also change them
depending on the situation.
• Consensus or Polarization: When a decision needs to be made, the
general wish is to please most of the population either by getting
everyone to agree with each other or by ignoring whatever the lesser
part of the population wants.

Models and Methods

Networks

Consider a social network, where an individual is represented by a node. If
two nodes interact then they are connected by an edge. Each node has a
degree k , defined by the number of neighbors it has.

Fig. 1: Example of a simple network.

Empirical data suggests that most social networks are scale-free having a
power-law degree distribution as

P(k)≈ k−γ (1)
Some other relevant network properties are the clustering coefficient and
the average path length, defined as:

Ci = 2Li
ki(ki−1) and 〈D〉 = 1

N(N−1) ∑
i 6=j

Dij (2)

Here, Li is the total number of trios formed by i and two of his neighbors,
and Dij is the smallest number of links between i and j .

Rules for Changes in Opinion

X A network of N individuals is built. A continuous value oi between 0
and 1 is assigned to each node representing their opinion.

X For every time step, the individuals verify their neighbors’ average
opinion 〈oi(t)〉 = 1

ki
∑j∈νi oj(t), and computes ∆oi(t) = 〈oi(t)〉−oi(t).

X The new opinion given by:

oi(t +1) =
{

oi(t) + µ∆oi j(t) if ∆oi(t)≤ ε

oi(t) if ∆oij(t) > ε,

There is a tendency for individuals to approach their opinion to that of his
group at a rate µ ∈ (0,1) only if it is within a range ε of tolerance.

Rules for Changes in Topology

After the opinions oi are updated, the connections between i and his/her ki
neighbors can be broken or redirected.

X A connection between any pair of nodes i and j is kept if
∆oij = |oi(t)−oj(t)|< ε , otherwise, the connection is broken with
probability p = 1− e−κ∆oij

X After breaking a connection, a node can create a new one with any
other node k if their opinion differs by less than ε . The probability is
proportional to the distance between them given by:

q =
{
e−dik/do, if dik < dmax

0, otherwise
X If a connection is broken but not replaced at a specific time step, it can

be replaced at a future time step following the above rules.

Here, κ and do are control parameters representing the tendency for
breaking connections and reconnection characteristic distance respectively.
The parameter dmax is an upper cutoff.

Results

(a) (b) (c) (d)

Fig. 2: Typical networks exhibiting (a) single community (the full consensus regime for ε ≥ 0.5 in which m = 0), (b) a single connected component concomitant with small isolated groups (majority
consensus regime for εc < ε < 0.5), (c) multiple modules connected by bridges (the radicalization regime for ε . εc), and (d) disconnected modules (still in the radicalization regime, but for ε � εc). In
this range, the rupture of several bridges between communities generates isolated clusters. These networks have N = 12,800 nodes and tolerance thresholds are (a) ε = 0.5, (b) ε = 0.145, (c) ε = 0.085,
and (d) ε = 0.025. Different colors represents communities detected by the Louvain algorithm.

From the initial state, the opinion distribution changes drastically
according to the given value of ε , resulting in one of the 4
categories (a, b, c or d) shown in Figs. 2 and 3.

Fig. 3: Temporal evolution of opinion distribution on a network of 1000 nodes.
Each one with the same initial state but with different values for tolerance,
ε = 0.120, ε = 0.115, ε = 0.090 e ε = 0.075 respectively.

We define a measure of consensus m = 1
N ∑i |oi−〈o〉| as an order

parameter. The associated variability is defined as the variance of m
computed over the ensemble of samples for t→ ∞,
χm = 〈o2〉en−〈o〉2en can be used to estimate the transition point εc.
At asymptotically large N , a value εc ≈ 0.10 was found using a
finite size scaling of the form εc(N) = εc(∞) + const.×N−1/2
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Fig. 4: (a) Order parameter m at the stationary state as a function of the
tolerance threshold ε and the stationary state opinions’ variability for different
system sizes N . (b) Finite-size scaling of εc, the critical tolerance threshold

Changes of topology can be detected by the average shortest path
length 〈D〉 of the largest connected component. The average
distances present local maxima and minima as ε is increased from
zero. These regions are related to fragmentation points.

Fig. 5: Average distance between the nodes belonging to the largest connected
component as a function of ε . The network size was fixed as N = 12,800. Top
and bottom snapshots represent typical network structures at minima and
maxima of curve.

Due to changes in topology, the network degree distribution deviates
from the initial UCM power-law distribution. Due to homophily,
individuals tend to form ties with others of the same group, this can
be quantified by the average clustering coefficient 〈C〉.
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Fig. 6: (a) Degree distributions for stationary networks generated at distinct ε

values. N = 1000 nodes was fixed. (b) Clustering coefficient as a function of ε

for various network sizes N .

Concerning the structure of the adaptive social network, a
measurement of the largest connected component indicates different
regimes in relation to ε .
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Fig. 7: Fractional size of the largest connected component as a function of the
tolerance threshold ε . The constant s0 = 0.00135 represents the average
component fractional size as ε → 0. Inset shows the scaling above the critical
threshold. The network has N = 1,600 nodes.

Conclusions
• This approach replicates different sorts of polarization regimes
caused only by opinion difference among the nodes.
• Through order parameters, transition points between said
regimes becomes evident as shown in Fig. 4. Such transition
points are backed by other measurements.
• Polarized networks show sometimes drastically different
properties when compared to regular scale-free unpolarized
networks.
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