Entropic analysis of an opinion formation model presenting a spontaneous third position emergence

Jorge A. Revelli, Marcos E. Gaudiano.

Facultad de Matemática, Astronomía, Física y Computación (FaMAF - UNC). IFEG - CIEM (UNC - CONICET) Córdoba Argentina.

> Workshop on Sociophysics: Social Phenomena from a Physics Perspective October 18, 2021

Entropic analysis... Jorge A. Revelli Marcos Gaudiano

Workshop on sociophysics 2021 Motivation Model Results Conclussions

Third position Emergence.

How could we explain this fact?

The model

UNC

Configuration map

- Square discreet arrangement composed by λ^2 pixels.
- Each pixel represents an idea associated to a person.
- There are **three different ideas or ideological positions**, Y, L y B.
- Positions Y y L are **active ones**. B is a **passive position**.
- Initially, each ideological position has a given **number of supporters.**
- Let \mathbf{r}_i (i= Y, L, B) be the initial fraction of supporters.

Third position Emergence.

The model

The Sznajd model

Let M_{ij} be the matrix element of the configuration map that represents The idea of the person (i,j).

$$M_{ij}(t + \Delta t) = M_{\overline{i},\overline{j}}(t), \quad M_{\overline{i},\overline{i}} \neq 0$$

(*n*, *m*) is the first active neighb (i, j) (\bar{i}, \bar{j}) is the second active neighbor of (i, j)

- Square discreet arrangement composed by λ^2 pixels.
- Each pixel represents an **idea** associated to a person.
- There are **three different ideas or ideological positions**, Y, L y B.
- Positions Y y L are **active ones**. B is a **passive position**.
- Initially, each ideological position has a given **number of spporters.**
- Let \mathbf{r}_i (i= Y, L, B) be the initial fraction of supporters.

Third position Emergence.

The model

At long times

Idea structures are characterized by means of **fractal dimensioin D**.

In our case: $0 \le D \le 2$

An entropical characteization for complex systems becoming out of control. M. Gaudiano, Physica A, **440**, 185, (2015).

The initial configuration is generated by using the *"box counting" method*.

Configuration map

Initial pattern: λ =64 side r_Y=0.15 D_Y=1.70 r_L=0.15 D_L=1.60

Third position Emergence

Third position Emergence Structured initial conditions

Random initial conditions

10 20 30 40 50 60

Third position Emergence

Probability of winning for the emerging party

Non monotonous regime is associated to the maximum unpredictability

Third position Emergence *Entropic analysis*

An entropical characterization for complex systems becoming out of control. M. Gaudiano, PhysicaA, **440**, 185, (2015).

Conclussions

> Initial conditions matter.

>Hierarchically structured systems have an anomalous entropy production.

Published related Works

- Spontaneous emergence of a third position in an opinion formation model Physica A. (2019) **521**, 501.

- Entropical analysis of an opinion formation model presenting a spontaneous third position emergence Eur. Phys. J. B (2021), **94**, 89

On the role of structured initial conditions in the Schelling model.
Physca A. in press.

Jorge A. Revelli : jorge.revelli@unc.edu.ar

Marcos E. Gaudiano : marcosgaudiano@gmail.com

Entropic analysis...

Jorge A. Revelli Marcos Gaudiano

I invite you to participate in Marcos's talk

Why are the borders of Palestine/Israel and Wallonia/Flanders so different?: Entropic Analysis of a Schelling model with hierarchically structured initial conditions.

It will be held on Tuesday 19 October at 11:30 hs.

Jorge A. Revelli : jorge.revelli@unc.edu.ar

Marcos E. Gaudiano : marcosgaudiano@gmail.com

Entropic analysis...

Jorge A. Revelli Marcos Gaudiano

Entropic analysis...

Jorge A. Revelli Marcos Gaudiano

