Analytical approach to the Axelrod model based on similarity vectors
Lucía Pedraza, Sebastián Pinto, Juan Pablo Pinasco, and Pablo Balenzuela

AXELROD MODEL
Pairwise interactions

\[[2,3,2,1,3] \quad [2,1,3,1,2] = \]
Copy a feature with probability \(h = S/F \)

Parameters
- \(N \): #Agents
- \(F \): #Features
- \(Q \): #Number of features

Non-equilibrium phase transition

Gain: new possible i-links
Lost: Actual i-links possible changes

- **Direct changes**:
 Chages related to a copy of a feature from one node to another
- **Indirect changes**:
 Coming from the updating of all the similarities involving the active agent. There are \(N-2 \) indirect changes in each interaction.

SIMILARITY VECTOR

\[\frac{dP_i}{dt} = G(t) - L(t) \]

- **Forward transitions**
 \[G(t) = \text{non-equilibrium phase transition} \]
- **Backward transitions**
 \[L(t) = \text{size of the bigger component} \]

F-dimensional binary vector.
- 1 if the agents share the cultural feature.
- 0 otherwise.

Example

\[(2,1,2,2,1) \quad (0,0,0,1,0) \]
\[(1,0,1,1,0) \quad (0,1,0,1,1) \]
\[(2,4,2,2,3) \quad (1,4,3,2,3) \]

Q only sets the initial condition

MASTER EQUATIONS

Equation

\[\frac{dP_0}{\gamma} = \frac{(N - 2)}{27} \left(P_1^3 - 3P_1P_3P_2 \right) \]
\[\frac{dP_1}{\gamma} = \frac{P_1}{3} + \frac{(N - 2)}{27} \left(-2P_1^2 - 3P_1^2P_3 + P_1P_2 + 3P_1P_2 - 3P_0P_1P_2 \right) \]
\[\frac{dP_2}{\gamma} = \frac{2P_2}{3} + \frac{(N - 2)}{27} \left(P_3^3 + 6P_2P_3 - 2P_1P_2 - 3P_0P_1P_2 \right) \]
\[\frac{dP_3}{\gamma} = \frac{2P_3}{3} + \frac{(N - 2)}{27} \left(-3P_1P_3 + P_1P_2 \right) \]

- **Linear terms**
 Direct changes
- **Non-linear terms**
 Indirect changes

Fixed points

- **Analytical trajectories in phase diagram.**
- **Initial conditions**
- **Non-linear steady state**

TRANSITIONS

- **Analytical vs simulations**
- **F=3 agrees for**
- **little values of Q/N**
- **The analysis accurately predicts for graphs with**
 - **high mean degree**

DINAMICS

- **Linear terms**
 Direct changes
- **Non-linear terms**
 Indirect changes

The transition depends of the initial value driven by \(Q \) and the decouple of the linal and quadratic terms driven by \(N \)