

The R network evolution: Characterization of a collaborative software Ariel Salgado - Inés Caridi

Instituto de Cálculo, FCEN - UBA, CONICET

WORKSHOP ON SOCIOPHYSICS: SOCIAL PHENOMENA FROM A PHYSICS PERSPECTIVE

Why software networks?

Why CRAN?

Packages + Dependencies + Suggestions

- Packages increased from less than 100 to more than 12 thousand in 20 years (*log N_t ~ 7.7.10⁻⁴.t*)
- R started as a *niche* statistical language, while today is one of the preferred tools for Data Science.
- The growth of CRAN accompanies the growth of a worldwide community of users and developers.
- The network started being *sparse* but today the number of relations (**Dependencies and Suggestions**) surpasses the number of packages.

The comprehensive R Archive Network

caret dependency tree

CRAN is represented through two networks:

- **Dependency network:** two packages are connected if one relies on the other to work.
- Suggestion network: two packages are connected if there is a tutorial if one package uses another in a tutorial.

caret suggestion neighbors

In this talk...

- Macroscopic growth of the network:
 - \rightarrow Biggest connected component
 - \rightarrow Mean degree
- Microscopic growth of the network:
 - \rightarrow Degree distribution
 - \rightarrow Connections at arrival
 - \rightarrow Preferential attachment, and
- Commentary on the relationship between the network's events and the R events

Macroscopic growth: mean degree and BCC

 \rightarrow The mean degree changes its slope many times, indicating changes in the global connectivity, and probably in the developing logic

 \rightarrow Both networks transition from fully disconnected networks to mostly BCC. \rightarrow The structure is a balance between disconnected packages and the BCC

Microscopic view: degree distributions

 \rightarrow The number of dependencies is bounded and resembles a lognormal distribution.

 $\rightarrow \mbox{Transition}$ from a power law to a lognormal

Microscopic behavior: incoming degree distribution

 \rightarrow The number of connections included by a new package increases as the fraction of packages in the BCC increases

1.000 0.100 Density 0.010 0.001 1.0 3.0 5.0 0.5 Normalized dependency in degree (DID) at arrival 1.000 2019-04 0.100 2013-10-22 date (t) 0.010 2008-05-01 0.001 2002-11-09 0.5 10 3.0 5.0 $P(k) = \left\{ egin{array}{c} a_0 S + b_0, \; k = 0 \ \log \mathcal{N}(rac{k}{a_1 S + b_1}), \; k > 0 \end{array}
ight.$ Normalized suggest degree (SD) at arrival

Microscopic behavior: preferential attachment

Following method in [1] we can visualize how **preferential attachment (PA)** changes through the evolution.

 \rightarrow **Dependencies** show a power law PA.

 \rightarrow Suggestions have near power law PA, including extra logarithmic terms

 \rightarrow Both networks show evidence of **superlinear PA**

[1] H. Jeong, Z. Néda, A.-L. Barabási, Measuring preferential attachment in evolving network (2003)

 $\Pi(k) \propto k^{-0.32} o PA \propto k^{1.96}$

Sum up: Relation with historical events

 \rightarrow Changes in versions of R produce changes in CRAN

 \rightarrow The suggestion PA changes due to the publication of packages aiding the development process.

→ The slow down in the number of packages can be due to a hardening of CRAN Publishing requirements

Conclusions

- CRAN is an example of an empirical collaborative evolving network,
- External events can be related to growing patterns and connectivity changes.
- **Dependency and suggestion** network **show preferential attachment**. Both are **superlinear**.
- A package tends to require more packages as the BCC grows. However, a steady shape of the distribution remains.
- Both networks can be seen as **one giant cluster** and **a myriad of independent packages**. As the network grows, the fraction of independent packages reduce and the giant cluster represents the biggest part of the network.

