The R network evolution: Characterization of a collaborative software

Ariel Salgado - Inés Caridi

Instituto de Cálculo, FCEN - UBA, CONICET
Why software networks?

Collaborative networks

Paper citations

Package Dependencies

Package Recommendations

Software networks

Functions and methods

The R Network
Why CRAN?

- Packages increased from less than 100 to more than 12 thousand in 20 years ($\log N_t \sim 7.7 \cdot 10^{-4} \cdot t$)
- R started as a *niche* statistical language, while today is one of the preferred tools for Data Science.
- The growth of CRAN accompanies the growth of a worldwide community of users and developers.
- The network started being *sparse* but today the number of relations (Dependencies and Suggestions) surpasses the number of packages.
CRAN is represented through two networks:

- **Dependency network**: two packages are connected if one relies on the other to work.
- **Suggestion network**: two packages are connected if there is a tutorial if one package uses another in a tutorial.
In this talk...

- Macroscopic growth of the network:
 - Biggest connected component
 - Mean degree
- Microscopic growth of the network:
 - Degree distribution
 - Connections at arrival
 - Preferential attachment, and
- Commentary on the relationship between the network’s events and the R events
Macroscopic growth: mean degree and BCC

→ The mean degree changes its slope many times, indicating changes in the global connectivity, and probably in the developing logic.

→ Both networks transition from fully disconnected networks to mostly BCC.

→ The structure is a balance between disconnected packages and the BCC.
Microscopic view: degree distributions

→ The number of dependencies is bounded and resembles a lognormal distribution.
→ Transition from a power law to a lognormal distribution.

→ The number of suggestions and dependent packages resembles a power law.
→ It does not change very much through evolution.
Microscopic behavior: incoming degree distribution

→ The number of connections included by a new package increases as the fraction of packages in the BCC increases.

→ The distribution is a zero inflated lognormal with mean scaled by the BCC.

\[P(k) = \begin{cases}
 a_0 S + b_0, & k = 0 \\
 \log \mathcal{N}(\frac{k}{a_1 S + b_1}), & k > 0
\end{cases} \]
Microscopic behavior: preferential attachment

Following method in [1] we can visualize how preferential attachment (PA) changes through the evolution.

→ Dependencies show a power law PA.

→ Suggestions have near power law PA, including extra logarithmic terms.

→ Both networks show evidence of superlinear PA.

$$\Pi(k) \propto k^{-0.40} \rightarrow PA \propto k^{1.60}$$

$$\Pi(k) \propto k^{-0.32} \rightarrow PA \propto k^{1.96}$$
Sum up: Relation with historical events

→ Changes in versions of R produce changes in CRAN

→ The suggestion PA changes due to the publication of packages aiding the development process.

→ The slow down in the number of packages can be due to a hardening of CRAN Publishing requirements
Conclusions

- **CRAN** is an example of an **empirical collaborative evolving network**,
- **External events** can be related to **growing patterns** and **connectivity changes**.
- **Dependency and suggestion** network show **preferential attachment**.
 Both are **superlinear**.
- A package tends to **require more packages as the BCC grows**. However, a steady shape of the distribution remains.
- Both networks can be seen as **one giant cluster** and **a myriad of independent packages**. As the network grows, the fraction of independent packages reduce and the giant cluster represents the biggest part of the network.
Thanks a lot for your time!

...There are any questions?