Universality in few-body systems

Pascal Naidon, RIKEN

ribf.riken.jp/~pascal/

(snp.riken.jp)

School on Critical Stability of Few-body Quantum Systems - October 4-8, 2021

Pascal Naidon, RIKEN ribf.riken.jp/~pascal/

(snp.riken.jp)

2005

PhD in France (Laboratoire Aimé Cotton, Orsay) in ultracold atom theory. Formation of molecules in Bose-Einstein condensates

2005-2008

 Postdoctoral researcher at NIST (National Institute of Standards and Technology)
 Properties of Alkaline-earth atoms for atomic clocks

2008-2012 Postdoctoral researcher at the ERATO project of Masahito Ueda (The University of Tokyo). Efimov states in ultracold-atom experiments

2012

Research Scientist at RIKEN Universal few-body and many-body physics

Aim

Look at a particular aspect of quantum physics: the **universal physics** that arises for **nearly-resonant short-range interactions**.

- > nuclear physics
- > atomic physics (cold atoms)
- > condensed matter, etc.

Look in detail at the case of two-body and three-body systems, and in particular the **Efimov effect**.

What is universality?

A phenomenon is *universal* when it applies to *many different physical systems* with a simple law that depends upon just *a few parameters*. Introduction

Gravitation is universal

R = 384,400 km

Mass $M = 6 \times 10^{24}$ kg

Earth

Universal law: long-range force

Celestial world

Mass $M' = 7 \times 10^{22}$ kg

Introduction

No apparent universality in the microscopic world

- Short-range forces
- Many different interaction potentials that depend on the nature and states of the particles

Subatomic world Strong force $\mathbf{b} = \mathbf{1}_{r}^{fm}$

"Zero-range" universality

Approximate universal law

$$E \approx -\frac{\hbar^2}{ma^2} = 1.0 \times 10^{-7} \,\mathrm{eV}$$

Subatomic world Strong force

Deuteron

 $a = 5.4 \, \text{fm}$

$$E \approx -\frac{\hbar^2}{ma^2} = 1.4 \times 10^6 \,\mathrm{eV}$$

"Zero-range" universality

Approximate universal law: effective long-range force *Efimov attraction*

Plan

TWO-BODY PHYSICS

- Basic theory (resonances)
- Zero-range universality
- Feshbach resonances
- Zero-range theory
- Extras (Separable theory)

2 THREE-BODY PHYSICS

- History
 - Thomas collapse
 - STM's zero-range theory
 - Efimov's breakthrough
- Efimov effect and Efimov states

3 UNIVERSAL CLUSTERS

- Experimental observations in nuclear and atomic systems
- Mixtures of particles

4

VAN DER WAALS UNIVERSALITY

- Two-body systems
- Three-body systems

2. Two-body physics

Two-body physics

Basic theory

Basic theory

Basic theory

Basic theory

Spherical coordinates:

 $\psi(\vec{r}) =$

=4

Partial wave expansion:

Radial Schrödinger equations:

described by a wave function
$$\psi(\vec{r})$$
.
Schrödinger equation at energy $E: \left(-\frac{\hbar^2}{2\mu}\nabla_r^2 + V(r) - E\right)\psi(\vec{r}) = 0$
 $\left(-\nabla_r^2 + \frac{2\mu}{\hbar^2}V(r) - \frac{2\mu}{\hbar^2}E\right)\psi(\vec{r}) = 0$
 $\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\cdot) + \frac{1}{r^2}\left(\cot\theta\frac{\partial}{\partial\theta} + \frac{\partial^2}{\partial\theta^2} + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\theta^2}\right)P_\ell(\cos\theta)$
 $\ell(\ell+1)$
 $\int_{\ell=0}^{\infty} \frac{u_\ell(r)}{r}P_\ell(\cos\theta) \qquad \ell = 0: \text{ s wave}$
 $\ell = 1: \text{ p wave}$
 $\ell = 2: \text{ d wave}$
 $\left(-\frac{d^2}{dr^2} + \frac{\ell(\ell+1)}{r^2} + \frac{2\mu}{\hbar^2}V(r) - \frac{2\mu}{\hbar^2}E\right)u_\ell(r) = 0$

Quantum mechanically, the vector \vec{r} is

Radial Centrifugal kinetic repulsion energy

Basic theory: s wave

Radial Schrödinger equations:

Positive energy $E = \frac{\hbar^2 k^2}{2\mu} \ge 0$

 $\left(-\frac{d^2}{dr^2} + \frac{2\mu}{\hbar^2}V(r) - \frac{2\mu}{\hbar^2}E\right)u(r) = 0$ $-k^{2}$

k: wave number

Phase shift:

 $\delta = 0$ modulo π : effectively non-interacting $\delta \approx \frac{\pi}{2}$ modulo π : resonant interaction

At low scattering energy E, in the s wave:

For
$$k \ll b^{-1}$$
, $\tan \delta \approx -ka$

'Scattering length" (positive or negative)

sin(a + b) = sin a cos b + sin b cos a

Justification:

With potential
$$v: \left(-\frac{d^2}{dr^2} + v(r) - k^2\right)u(r) = 0$$

With potential $\bar{v}: \left(-\frac{d^2}{dr^2} + \bar{v}(r) - k^2\right)\bar{u}(r) = 0$
 $\times \bar{u}_{\ell}$
 $-\bar{u}u'' + (v - k^2)\bar{u}u = 0$
 $\times u_{\ell}$
 $-u\bar{u}'' + (\bar{v} - k^2)u\bar{u} = 0$
Subtract: $u\bar{u}'' - \bar{u}u'' + (v - \bar{v})\bar{u}u = 0$
 $(u\bar{u}' - \bar{u}u')' + (v - \bar{v})\bar{u}u = 0$

 $(u\bar{u}' - \bar{u}u')' = -(v - \bar{v})\bar{u}u$

At low scattering energy *E*, in the s wave:

For
$$k \ll b^{-1}$$
, $\tan \delta \approx -ka$
"Scattering length"
(positive or negative)

Condition for r = 0: u(0) = 0 $\bar{u}(0) = 0$

For
$$r \gg b$$
:
 $u(r) \rightarrow \frac{1}{k \cos \delta} \sin(kr + \delta)$
 $\bar{u}(r) \rightarrow \frac{1}{k \cos \bar{\delta}} \sin(kr + \bar{\delta})$

Justification:

With potential
$$v: \left(-\frac{d^2}{dr^2} + v(r) - k^2\right)u(r) = 0$$

With potential $\bar{v}: \left(-\frac{d^2}{dr^2} + \bar{v}(r) - k^2\right)\bar{u}(r) = 0$

$$(u\bar{u}' - \bar{u}u')' = -(v - \bar{v})\bar{u}u$$
$$[u\bar{u}' - \bar{u}u']_0^\infty = -\int_0^\infty (v - \bar{v})\bar{u}udr$$

$$\left[\frac{\sin(kr+\delta)\cos(kr+\bar{\delta})-\sin(kr+\bar{\delta})\cos(kr+\delta)}{k\cos\delta\cos\bar{\delta}}-0\right] = -\int_0^\infty (v-\bar{v})\bar{u}udr$$
$$\frac{\sin(\delta-\bar{\delta})}{k\cos\delta\cos\bar{\delta}} = -\int_0^\infty (v-\bar{v})\bar{u}udr$$

$$\bar{v} \to 0 \left(\bar{\delta} \to 0 \right) \qquad \qquad \frac{\tan \delta}{k} = -\int_0^\infty v(r) \frac{\sin(kr)}{k} u(r) dr$$

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

At low scattering energy *E*, in the s wave:

For
$$k \ll b^{-1}$$
, $\tan \delta \approx -ka$
"Scattering length"
(positive or negative)

Condition for r = 0: u(0) = 0 $\bar{u}(0) = 0$

For
$$r \gg b$$
:
 $u(r) \rightarrow \frac{1}{k \cos \delta} \sin(kr + \delta)$
 $\bar{u}(r) \rightarrow \frac{1}{k \cos \bar{\delta}} \sin(kr + \bar{\delta})$

$$u'(r) \xrightarrow[r \gg b]{} \frac{1}{\cos\delta} \cos(kr + \delta)$$
$$\bar{u}'(r) \xrightarrow[r \gg b]{} \frac{1}{\cos\bar{\delta}} \cos(kr + \bar{\delta})$$

Justification:

With potential
$$v: \left(-\frac{d^2}{dr^2} + v(r) - k^2\right)u(r) = 0$$

With potential $\bar{v}: \left(-\frac{d^2}{dr^2} + \bar{v}(r) - k^2\right)\bar{u}(r) = 0$
 $\bar{v} \rightarrow 0 (\bar{\delta} \rightarrow 0)$
 $\frac{\tan \delta}{k} = -\int_0^{\infty} v(r) \frac{\sin(kr)}{k} u(r) dr$
 $\approx -\int_0^b v(r) r \frac{\sin(kr)}{kr} u(r) dr$
For $kb \ll 1$
 $\int_0^b v(r) r u^{(0)}(r) dr$
 $\sin kr - \frac{\sin kr}{kr - kb \ll 1} 1$
 $u(r) - \frac{\sin kr}{kb \ll 1} 1$
The scattering length a is well defined if the potential $v(r)$ decays faster than $1/r^3$.

0

0

At low scattering energy *E*, in the s wave:

For
$$k \ll b^{-1}$$
, $\tan \delta \approx -ka$
"Scattering length"
(positive or negative)
Condition for $r = 0$:
 $u(0) = 0$
 $\bar{u}(0) = 0$
 $u(r) \xrightarrow[r > b]{} \frac{\sin kr + \tan \delta \cos kr}{k} \xrightarrow[kb \to o]{} r + \frac{\tan \delta}{k}$
 $\bar{u}(r) = \frac{\sin kr}{k}$
well

Basic theory: s wave

Basic theory

Basic theory

Short-range attractive interaction potential

Binding in classical systems

Critical strength g (zero-point) and quantisation

Critical strength g (zero-point) and quantisation

Two-body resonances \implies unitarity points, universality and scale invariance

Two-body resonances \Rightarrow unitarity points, universality and scale invariance

Cloud of atoms cooled to T < 1 μ K in a vacuum chamber m_F $\mathbf{\Omega}$ Magnetic field Zeeman levels of ⁶Li $m_F = +3/2 \ m_F = +1/2 \ m_F = -1/2$ 300 Zeeman effect: 200 Energy (MHz) F = 3/2Different internal atomic states shift differently with -100 F = 1/2magnetic field $m_F = -3/2$ -200 $m_F = -1/2 \ m_F = +1/2$ -300 100 50 150 0

Magnetic field (G)

Cloud of atoms cooled to T < 1 μ K in a vacuum chamber

Cloud of atoms cooled to T < 1 μ K in a vacuum chamber

Cloud of atoms cooled to T < 1 μ K in a vacuum chamber

2. Two-body physics > Feshbach resonances in ultra-cold gases

Closed-channel eigenstates: $(K + V_{cc}) \left| \bar{u}_{c}^{(n)} \right\rangle = E_{c}^{(n)} \left| \bar{u}_{c}^{(n)} \right\rangle$ Isolated resonance approximation:

$$G_c = \sum_n \frac{|\bar{u}_c^{(n)}\rangle \langle \bar{u}_c^{(n)}|}{E - E_c^{(n)}} \approx \frac{|\bar{u}_m\rangle \langle \bar{u}_m|}{E - E_m}$$

Radial wave function (for $\ell = 0$): $u(r) = \underbrace{u_o(r)}_{F_1, m_1} \otimes |F_2, m_2\rangle + \underbrace{u_c(r)}_{F_1, m_1} \otimes |F_2, m_2\rangle$

$$(K + V_{oo} - E)|u_o\rangle + V_{oc}|u_c\rangle = 0$$

(K + V_{cc} - E)|u_c\rangle + V_{co}|u_o\rangle = 0

 $\begin{aligned} |u_o\rangle &= |\bar{u}_o\rangle + G_o V_{oc} |u_c\rangle \\ |u_c\rangle &= 0 + G_c V_{co} |u_o\rangle \end{aligned}$

 $|u_{0}\rangle = |\bar{u}_{0}\rangle + G_{0}V_{0c}G_{c}V_{c0}|u_{0}\rangle$

With $K = -\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2}$

With the resolvents: $G_o = (E - K - V_{oo})^{-1}$ $G_c = (E - K - V_{cc})^{-1}$ And the open-channel eigenstate: $(K + V_{oo}) |\bar{u}_o\rangle = E |\bar{u}_o\rangle$

$$|u_{o}\rangle = |\bar{u}_{o}\rangle + G_{o}V_{oc}|\bar{u}_{m}\rangle \frac{\langle \bar{u}_{m}|V_{co}|u_{o}\rangle}{E - E_{m}}$$

2. Two-body physics > Feshbach resonances in ultra-cold gases

2. Two-body physics > Feshbach resonances in ultra-cold gases

2. Two-body physics > Feshbach resonances in ultra-cold gases

Zero-range theory

 $\tan \delta(k) \approx -ka$

Free wave: $u(r) \propto \sin(kr + \delta(k))$

 $u(r) \propto \sin kr + \tan \delta(k) \cos kr$

```
-u(r) \propto \sin kr - ka \cos kr
```

```
u'(r) \propto k(\cos kr + ka \sin kr)
```


Bethe-Peierls boundary condition:

(this condition being isotropic, it only affects the s wave)

Bethe-Peierls boundary condition:

(this condition being isotropic, it only affects the s wave)

"universal theory"(in terms of *a*)

Alternative formulations:

(1) "source term"

Including the boundary condition by a source term inside the Schrödinger equation:

(2) "Pseudopotential" (Huang-Yang, 1957) $-\frac{\hbar^{2}}{2\mu}\nabla^{2}\psi + \frac{4\pi\hbar^{2}a}{2\mu}\delta^{3}(\vec{r})\frac{d}{dr}(r\psi) = E\psi$ pseudopotential

(3) "zero-range" or "contact" interaction

Take any potential, set the range to zero, while increasing the depth to keep a fixed scattering length a.

(3) "zero-range" or "contact" interaction

Take any potential, set the range to zero, while increasing the depth to keep a fixed scattering length a.

Example in momentum space: $\tilde{V}(p) = \begin{cases} -g & \text{for } p \leq b^{-1} \\ 0 & \text{for } p > b^{-1} \end{cases}$

$$\frac{\hbar^2 p^2}{2\mu} \tilde{\psi}(\vec{p}) + \int \frac{d^3 q}{(2\pi)^3} \tilde{V}(q) \tilde{\psi}(\vec{p} - \vec{q}) = E \tilde{\psi}(\vec{p})$$

We can set $b \rightarrow 0$ only at the end of calculations

At zero energy E = 0:

"Renormalisation relation"

2. Two-body physics > Zero-range theory

Bethe-Peierls condition in momentum space

Schrödinger equation in coordinate space

$$-\frac{\hbar^2}{2\mu}\nabla^2\psi - \frac{4\pi\hbar^2}{2\mu}F\delta^3(\vec{r}) = E\psi$$

F.T.

Schrödinger equation in momentum space $\frac{\hbar^2 p^2}{2\mu} \tilde{\psi}(\vec{p}) - \frac{4\pi\hbar^2}{2\mu} F = E\tilde{\psi}(\vec{p})$ \downarrow $p^2 \tilde{\psi}(\vec{p}) - 4\pi F = \frac{2\mu}{\hbar^2} E\tilde{\psi}(\vec{p})$

$$\lim_{p \to \infty} (p^2 \tilde{\psi}(\vec{p}) - 4\pi F) = \frac{2\mu}{\hbar^2} E \lim_{p \to \infty} \tilde{\psi}(\vec{p}) = 0$$

$$4\pi F = \lim_{p \to \infty} p^2 \tilde{\psi}(\vec{p})$$

Condition for the source in coordinate space

$$\psi \mathop{\longrightarrow}_{r \to 0} F \times \left(\frac{1}{r} - \frac{1}{a}\right)$$

$$\psi(r) - \frac{F}{r} \underset{r \to 0}{\longrightarrow} - F/a$$

$$\int \frac{d^3 p}{(2\pi)^3} \left(\tilde{\psi}(\vec{p}) - \frac{4\pi F}{p^2} \right) e^{i\vec{p}\cdot\vec{r}} \underset{r \to 0}{\longrightarrow} - F/a$$

$$\int \frac{d^3 p}{(2\pi)^3} \left(\tilde{\psi}(\vec{p}) - \frac{4\pi F}{p^2} \right) = -F/a$$

Condition for the source in momentum space

$$F = -a \int \frac{d^3 p}{(2\pi)^3} \left(\tilde{\psi}(\vec{p}) - \frac{\lim_{q \to \infty} q^2 \tilde{\psi}(\vec{q})}{p^2} \right)$$

Bound state in the Zero-Range Theory

There is only one bound state in the zero-range model. It has zero angular momentum.

We look for eigenstates of energy $E = -\hbar^2 \kappa^2 / 2\mu$

Equation: $-\frac{d^2u(r)}{dr^2} = -\kappa^2 u(r)$ $u(r) = Ae^{-\kappa r} + Be^{+\kappa r}$ Condition: $\frac{du(r)}{dr} = -\frac{1}{a}u(r)$ $-\kappa u(r) = -\frac{1}{a}u(r)$ $\kappa = \frac{1}{a}$

Momentum space Equation: $p^2 \tilde{\psi}(\vec{p}) - 4\pi F = -\kappa^2 \tilde{\psi}(\vec{p})$

$$\tilde{\psi}(\vec{p}) = \frac{4\pi F}{p^2 + \kappa^2}$$

Condition:
$$\int \frac{d^3 p}{(2\pi)^3} \left(\tilde{\psi}(\vec{p}) - \frac{4\pi F}{p^2} \right) = -F/a$$
$$F 4\pi \int \frac{d^3 p}{(2\pi)^3} \left(\frac{1}{p^2 + \kappa^2} - \frac{1}{p^2} \right) = -F/a$$
$$\kappa = \frac{1}{a}$$
$$-\kappa$$
$$\tilde{\psi}(\vec{p}) = \frac{1}{\pi \sqrt{a}} \frac{1}{n^2 + a^{-2}}$$

2. Two-body physics > Zero-range theory

Two-body spectrum in the Zero-Range Theory

Summary

Universal "Halo dimers"

Zero-range theory for repulsive forces?

The scattering length cannot be larger than b (hard sphere limit a = b).

Therefore, in the limit of small b, the scattering length is always zero.

There is no zero-range limit nor universality for repulsive forces.

theory. Therefore there is a *bound state*!

2. Two-body physics > Extras

Oth	ier dimensic	ns	
	For $b \ll ec{r} \ll k^{-1}$	Zero-range theory	Universal bound state
D=3	$\psi(r) \propto \frac{1}{ \vec{r} } - \frac{1}{a_{\rm app}}$	For attractive forces with large scattering length $ a_{3D} \gg b$	$E = -\frac{\hbar^2}{2\mu a_{3D}^2} \qquad (a_{3D} > 0)$
	[¹] ⁽⁴³]	There is a bound state only for $a_{3D} > 0$.	
<i>D</i> = 2	$\psi(r) \propto \ln \frac{ \vec{r} }{a_{2D}}$	For attractive forces with large scattering length $a_{2D} \gg b$	$E = -4e^{-2\gamma} \frac{\hbar^2}{2\mu a_{2D}^2}$
		The scattering length a_{2D} is always positive. There is always a bound state.	
D = 1	$\psi(r) \propto r - a_{1D}$	For attractive $(a_{1D} > 0)$ and repulsive $(a_{1D} < 0)$ with large $ a_{1D} \gg b$	$E = -\frac{\hbar^2}{2\mu a_{1D}^2}$
 → Prof Doerte Blume's lecture. 		No regularisation: $v(r) ightarrow g\delta(r)$ with $g = -$	$-\frac{2}{a_{1D}}$

Beyond zero-range theory: the effective-range theory

For
$$k \ll b^{-1}$$
, $\frac{k}{\tan\delta} \approx -\frac{1}{a} + \frac{1}{2}r_ek^2 + o(k^2)$
Scattering length Effective range

Universal description of the low-energy two-body physics in a wider range, in terms of only **two parameters**.

Bound state:

$$\tan \delta = \frac{1}{i} \quad \Longrightarrow \quad E = -\frac{\hbar^2}{mr_e^2} \left(1 - \sqrt{1 - 2r_e/a}\right)^2$$

Very useful to describe two-body systems, but less relevant to systems with more than 2 particles.

2. Two-body physics > Extras

Separable theory

Zero-range potentials (contact interactions) easier to solve than finite-range potentials. This is due to the **separability** of these potentials.

• One can consider separable potentials without taking the zero-range limit!

Special case: Zero-range limit

$$\tilde{\phi}(\vec{p}) = \begin{cases} 1 & \text{for } p \leq \Lambda \\ 0 & \text{for } p > \Lambda \end{cases}$$
 with $\Lambda \to \infty$

Normalisation: $\int \phi(r) d^3 r = \tilde{\phi}(0) \equiv 1$ So that the potential is described at low energy by the coupling constant g

Solution at zero energy for an attractive separable potential: $-g|\phi\rangle\langle\phi|$

$$\frac{\hbar^2 p^2}{2\mu} \tilde{\psi}(\vec{p}) - \int \frac{d^3 q}{(2\pi)^3} g \tilde{\phi}(\vec{p}) \tilde{\phi}^*(\vec{q}) \tilde{\psi}(\vec{q}) = E \tilde{\psi}(\vec{p})$$

At zero energy
$$E = 0$$
:

Three-body physics

The Thomas Collapse (1935) The Skorniakov Ter-Martirosian Equations (1955) The Efimov breakthrough (1970) Efimov states

The Thomas collapse (1935)

Llewellyn Thomas in 1926

"The Interaction Between a Neutron and a Proton and the Structure of H3.", Phys. Rev. 47, 903, 1935

 $H_{2B} = T_1 + T_2 + V(r_{12})$

Ground energy: E_{2B}

Collapse: $E_{3B} \rightarrow -\infty$ when $b \rightarrow 0$ Why? *This was a mystery*.

triton V $H_{3B} = T_1 + T_2 + T_3 + V(r_{12}) + V(r_{13})$ Ground energy: $E_{3B} \leq \frac{\langle \psi | H_{3B} | \psi \rangle}{\langle \psi | \psi \rangle}$ For a particular ansatz ψ constant $|E_{2B}|$ Estimate of *b*: From the known ratio $\frac{E_{3B}}{E_{2B}} = 4$, Thomas found $b \sim 6 \cdot 10^{-15}$ m

3. Three-body physics > Skorniakov – Ter-Martirosian's theory (1955)

The Skorniakov – Ter-Martirosian equation (1955)

G. Skorniakov and K. Ter-Martirosian, "Three Body Problem for Short Range Forces. I. Scattering of Low Energy Neutrons by Deuterons," **Sov. Phys. JETP, 4, 648, 1957**.

Karen Avetikovich Ter-Martirosian (undated)

General three-body equation

Three-body wave function: $\Psi(\vec{x}_1, \vec{x}_2, \vec{x}_3)$

$$\widehat{H} = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{\hbar^2}{2m} \nabla_3^2 + V(r_{12}) + V(r_{13}) + V(r_{23})$$

- 1. Eliminate the centre of mass $\vec{R} = (\vec{x}_1 + \vec{x}_2 + \vec{x}_3)/3$
- 2. Express the remaining coordinates in terms of Jacobi coordinates: $\Psi(\vec{R}, \vec{r})$

2

$$\widehat{H} = -\frac{3\hbar^2}{4m} \nabla_R^2 - \frac{\hbar^2}{m} \nabla_r^2 + V(r_{12}) + V(r_{13}) + V(r_{23})$$

General three-body equation

$$\widehat{H} = -\frac{3\hbar^2}{4m}\nabla_R^2 - \frac{\hbar^2}{m}\nabla_r^2 + V(r_{12}) + V(r_{13}) + V(r_{23})$$

Schrödinger equation at energy E

$$\left(-\frac{3\hbar^2}{4m}\nabla_R^2 - \frac{\hbar^2}{m}\nabla_r^2 + V(r_{12}) + V(r_{13}) + V(r_{23}) - E\right)\Psi(\vec{R},\vec{r}) = 0$$

Schrödinger equation at energy $E = -\frac{\hbar^2 \kappa^2}{m} < 0$ $\left(-\frac{3}{4}\nabla_R^2 - \nabla_r^2 + \kappa^2\right)\Psi(\vec{R}, \vec{r}) = -\frac{m}{\hbar^2}\left(V(r_{12}) + V(r_{13}) + V(r_{23})\right)\Psi(\vec{R}, \vec{r})$ 2

3

Zero-range limit

Schrödinger equation at energy
$$E = -\frac{\hbar^2 \kappa^2}{m} < 0$$

 $\left(-\frac{3}{4}\nabla_R^2 - \nabla_r^2 + \kappa^2\right)\Psi(\vec{R}, \vec{r}) = -\frac{m}{\hbar^2}\left(V(r_{12}) + V(r_{13}) + V(r_{23})\right)\Psi(\vec{R}, \vec{r})$

$$\begin{pmatrix} -\frac{3}{4}\nabla_R^2 - \nabla_r^2 + \kappa^2 \end{pmatrix} \Psi(\vec{R}, \vec{r}) = 4\pi [F_1(R_1)\delta^3(r_{23}) + F_2(R_2)\delta^3(r_{13}) + F_3(R_3)\delta^3(r_{12})]$$

$$\text{with} \quad \Psi(\vec{R}_k, \vec{r}_{ij}) \xrightarrow[r_{ij} \to 0]{} \begin{pmatrix} \frac{1}{r_{ij}} - \frac{1}{a_{ij}} \end{pmatrix} F_k(\vec{R}_k)$$

$$(\text{Bethe-Peierls condition})$$

3. Three-body physics > Skorniakov – Ter-Martirosian's theory (1955)

The Skorniakov & Ter-Martirosian equation

$$\left(-\frac{3}{4}\nabla_{R}^{2}-\nabla_{r}^{2}+\kappa^{2}\right)\Psi\left(\vec{R},\vec{r}\right) = 4\pi\left[F_{1}(R_{1})\delta^{3}(r_{23})+F_{2}(R_{2})\delta^{3}(r_{13})+F_{3}(R_{3})\delta^{3}(r_{12})\right]$$
n momentum (Fourier) representation
with $\Psi\left(\vec{R}_{k},\vec{r}_{ij}\right)\xrightarrow{r_{ij}\to 0}\left(\frac{1}{r_{ij}}-\frac{1}{a_{ij}}\right)F_{k}(\vec{R}_{k})$
(3) $P_{2}^{2}+m^{2}+m^{2}$
 $\tilde{W}\left(\vec{P},\vec{r}\right) = 4\pi\sum_{i}\tilde{E}\left(\vec{P}\right)$
(2)

In momentum (Fourier) representation

$$\left(\frac{3}{4}P^2 + p^2 + \kappa^2\right)\widetilde{\Psi}(\vec{P}, \vec{p}) = 4\pi \sum_{i=1,2,3} \tilde{F}_i(\vec{P}_i)$$

$$\widetilde{\Psi}(\vec{P}, \vec{p}) = \frac{4\pi \sum_{i=1,2,3} \widetilde{F}_i(\vec{P}_i)}{\frac{3}{4}P^2 + p^2 + \kappa^2} \quad \mathbf{1}$$

Skorniakov – Ter-Martirosian integral equations:

$$\left(\frac{1}{a_{ij}} - \sqrt{\frac{3}{4}P^2 + \kappa^2}\right)\tilde{F}_k(\vec{P}) + 4\pi \int \frac{d^3\vec{Q}}{(2\pi)^3} \frac{\tilde{F}_i(\vec{Q}) + \tilde{F}_j(\vec{Q})}{P^2 + Q^2 + \vec{Q}\cdot\vec{P} + \kappa^2} = 0$$

with $\{i, j, k\} = \{1, 2, 3\}$

Benefit of the zero-range theory: Now, the unknown function has only 1 argument! $\widetilde{\Psi}(\vec{P},\vec{p}) \longrightarrow \widetilde{F}(\vec{P})$

The Skorniakov & Ter-Martirosian equation

Detailed derivation (1/3):

$$\widetilde{\Psi}(\vec{P},\vec{p}) = \frac{4\pi \sum_{i=1,2,3} \widetilde{F}_i(\vec{P}_i)}{\frac{3}{4}P^2 + p^2 + \kappa^2} \quad \text{(1)} \quad \text{with} \quad \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{(2)}$$

Consider the function $\Omega(\vec{R}_k, \vec{r}_{ij}) = \Psi(\vec{R}_k, \vec{r}_{ij}) - \frac{1}{r_{ij}} F_k(\vec{R}_k)$, which removes the $1/r_{ij}$ divergence from Ψ . According to $(\mathbf{2})$, this function goes to the finite value $-1/a_{ij}F_k(\vec{R}_k)$ when $r_{ij} \to 0$. Let us consider its Fourier transform: $\widetilde{\Omega}(\vec{P}_k, \vec{p}_{ij}) = \widetilde{\Psi}(\vec{P}_k, \vec{p}_{ij}) - \frac{4\pi}{p_{ij}^2} \widetilde{F}_k(\vec{P}_k)$. We have $\Omega(\vec{R}_k, \vec{r}_{ij}) = \int \frac{d^3\vec{p}}{(2\pi)^3} \int \frac{d^3\vec{p}}{(2\pi)^3} \Omega(\vec{P}, \vec{p}) e^{i(\vec{P}\cdot\vec{R}_k + \vec{p}\cdot\vec{r}_{ij})}$, so $\Omega(\vec{R}_k, \vec{0}) = \int \frac{d^3\vec{p}}{(2\pi)^3} \int \frac{d^3\vec{p}}{(2\pi)^3} \Omega(\vec{P}, \vec{p}) e^{i\vec{P}\cdot\vec{R}_k}$, which is equal to $-1/a_{ij}F_k(\vec{R}_k)$. Taking the Fourier transform again, we arrive at $\int \frac{d^3\vec{p}}{(2\pi)^3} \Omega(\vec{P}, \vec{p}) = -1/a_{ij}\tilde{F}_k(\vec{P})$ i.e.

$$\int \frac{d^3 \vec{p}_{ij}}{(2\pi)^3} \left[\widetilde{\Psi} \left(\vec{P}_k, \vec{p}_{ij} \right) - \frac{4\pi}{p_{ij}^2} \widetilde{F}_k \left(\vec{P}_k \right) \right] = -\frac{1}{a_{ij}} \widetilde{F}_k \left(\vec{P}_k \right)$$

The Skorniakov & Ter-Martirosian equation

Detailed derivation (2/3):

$$\begin{split} \tilde{\Psi}(\vec{P},\vec{p}) &= \frac{4\pi \sum_{i=1,2,3} \tilde{F}_i(\vec{P}_i)}{\frac{3}{4}P^2 + P^2 + \kappa^2} \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{r}_{ij}) \xrightarrow{r_{ij} \to 0} \left(\frac{1}{r_{ij}} - \frac{1}{a_{ij}}\right) F_k(\vec{R}_k) \quad \text{with } \Psi(\vec{R}_k,\vec{R}_k) \quad \text{w$$

The Skorniakov & Ter-Martirosian equation

Detailed derivation (3/3):

$$\left(\frac{1}{a_{ij}} - \sqrt{\frac{3}{4}}P_k^2 + \kappa^2\right) \tilde{F}_k(\vec{P}_k) + 4\pi \int \frac{d^3\vec{p}_{ij}}{(2\pi)^3} \frac{\tilde{F}_i(\vec{P}_i)}{\frac{3}{4}} + 4\pi \int \frac{d^3\vec{p}_{ij}}{(2\pi)^3} \frac{\tilde{F}_j(\vec{P}_j)}{\frac{3}{4}} = 0$$
Using $\vec{p}_{ij} = -\vec{P}_i - \frac{1}{2}\vec{P}_k$ and $\vec{p}_{ij} = \vec{P}_j + \frac{1}{2}\vec{P}_k$ to make a change of integration variable $\vec{p}_{ij} \to \vec{P}_i$ and $\vec{p}_{ij} \to \vec{P}_j$ in

the two integrals, one obtains:

$$\left(\frac{1}{a_{ij}} - \sqrt{\frac{3}{4}P_k^2 + \kappa^2}\right)\tilde{F}_k(\vec{P}_k) + 4\pi \int \frac{d^3\vec{P}_i}{(2\pi)^3} \frac{\tilde{F}_i(\vec{P}_i)}{\frac{3}{4}P_k^2 + \left(\vec{P}_i + \frac{1}{2}\vec{P}_k\right)^2 + \kappa^2} + 4\pi \int \frac{d^3\vec{P}_j}{(2\pi)^3} \frac{\tilde{F}_j(\vec{P}_j)}{\frac{3}{4}P_k^2 + \left(\vec{P}_j + \frac{1}{2}\vec{P}_k\right)^2 + \kappa^2} = 0$$

Finally, relabelling the integration variables \vec{P}_i and \vec{P}_j as \vec{Q} , one arrives at the Skorniakov – Ter-Martirosian equations:

$$\left(\frac{1}{a_{ij}} - \sqrt{\frac{3}{4}P^2 + \kappa^2}\right)\tilde{F}_k(\vec{P}) + 4\pi \int \frac{d^3\vec{Q}}{(2\pi)^3} \frac{\tilde{F}_i(\vec{Q}) + \tilde{F}_j(\vec{Q})}{P^2 + Q^2 + \vec{Q}\cdot\vec{P} + \kappa^2} = 0$$

Application to nucleons:

Nucleon interaction:

Deuteron-neutron scattering:

$$F_{3} = -F_{2} \equiv F \qquad F_{1} = 0$$

$$\left(\frac{1}{a_{t}} - \sqrt{\frac{3}{4}P^{2} + \kappa^{2}}\right)\tilde{F}(\vec{P}) - 4\pi \int \frac{d^{3}\vec{Q}}{(2\pi)^{3}} \frac{\tilde{F}(\vec{Q})}{P^{2} + Q^{2} + \vec{Q} \cdot \vec{P} + \kappa^{2}} = 0$$

Neutron-deuteron scatt. Length: a_n

Simplified version: $a_t = a_s$ $F_1 = F_2 = F_3 \equiv F$ (equivalent to the problem of 3 identical bosons)

$$\left(\frac{1}{a_t} - \sqrt{\frac{3}{4}P^2 + \kappa^2}\right)\tilde{F}(\vec{P}) + 8\pi \int \frac{d^3\vec{Q}}{(2\pi)^3} \frac{\tilde{F}(\vec{Q})}{P^2 + Q^2 + \vec{Q}\cdot\vec{P} + \kappa^2} = 0$$

Problem: energy is not bound from below!

3. Three-body physics > Skorniakov – Ter-Martirosian's theory (1955)

The analytical solution of Minlos-Faddeev (1961)

Skorniakov – Ter-Martirosian integral equation for three bosons at unitarity ($a \rightarrow \infty$):

$$\left(\frac{1}{4} - \sqrt{\frac{3}{4}P^2 + \kappa^2}\right)\tilde{F}(P) + \frac{2}{\pi}\int_0^\infty \frac{Q}{P}dQ\ln\frac{Q^2 + P^2 + PQ + \kappa^2}{Q^2 + P^2 - PQ + \kappa^2}\tilde{F}(Q) = 0$$

1. Extension of integration to $[-\infty,\infty]$

- 1

$$\left(0 - \sqrt{\frac{3}{4}P^2 + \kappa^2}\right)\tilde{F}(P) + \frac{1}{\pi}\int_{-\infty}^{\infty}\frac{Q}{P}dQ\ln\frac{Q^2 + P^2 + PQ + \kappa^2}{Q^2 + P^2 - PQ + \kappa^2}\tilde{F}(Q) = 0$$

2. Change of variables: $P = \frac{1}{\sqrt{3}}\kappa\left(z - \frac{1}{z}\right)$ $Q = \frac{1}{\sqrt{3}}\kappa(z' - 1/z')$

$$-g(z) + \frac{4}{\pi\sqrt{3}} \int_0^\infty \frac{dz'}{z'} \ln\left(\frac{z'^2 + z^2 + zz'}{z'^2 + z^2 - zz'}\right) g(z') = 0 \qquad \text{where } g(z) \equiv \left(z^2 - \frac{1}{z^2}\right) \tilde{F}(P)$$

The analytical solution of Minlos-Faddeev (1961)

$$-g(z) + \frac{4}{\pi\sqrt{3}} \int_0^\infty \frac{dz'}{z'} \ln\left(\frac{z'^2 + z^2 + zz'}{z'^2 + z^2 - zz'}\right) g(z') = 0 \qquad \text{where } g(z) \equiv \left(z^2 - \frac{1}{z^2}\right) F(P)$$

Scale invariance: $z \rightarrow \lambda z$ (if g(z) is a solution, then $g(\lambda z)$ is also a solution)

3. Solution of the form: $g(z) = z^s$

$$-z^{s} + \frac{4}{\pi\sqrt{3}} \int_{0}^{\infty} dz' \ln\left(\frac{z'^{2} + z^{2} + zz'}{z'^{2} + z^{2} - zz'}\right) z'^{s-1} = 0$$

$$-1 + \frac{4}{\pi\sqrt{3}} \int_{0}^{\infty} dx' \ln\left(\frac{1 + x^{2} + x}{1 + x^{2} - x}\right) x^{s-1} = 0$$

$$\frac{2\pi}{s} \frac{\sin\left(\frac{\pi}{6}s\right)}{\cos\left(\frac{\pi}{2}s\right)} \quad \text{for } -1 < \operatorname{Re}(s) < 1$$

Transcendental equation:

3. Three-body physics > Skorniakov – Ter-Martirosian's theory (1955)

3. Solution of the form: $g(z) = z^s$

$$s = \frac{8\pi \sin\left(\frac{\pi}{6}s\right)}{\sqrt{3}\cos\left(\frac{\pi}{2}s\right)}$$

Imaginary solutions $s = \pm i|s|$ Real solutions $s = \pm |s|$ Δ 20 3 10 2 0 $|s_0| = 1.00624 \dots$ -10 1 -20 (2 3 2 4 6 8 10 0 1 0 |S||S|

3. Three-body physics > Skorniakov – Ter-Martirosian's theory (1955)

3. Solution of the form: $g(z) = z^s$

$$s = \frac{8\pi \sin\left(\frac{\pi}{6}s\right)}{\sqrt{3}\cos\left(\frac{\pi}{2}s\right)}$$

 $g(z) = C_+ z^{i|s_0|} + C_- z^{-i|s_0|}$

Since
$$g(z) = (z^2 - z^{-2})\tilde{F}(P)$$
, we have $g(1) = 0$, therefore $C_+ = -C_- \equiv C$.

 $g(z) = C(z^{i|s_0|} - z^{-i|s_0|})$

4. Going back to the original variables, we obtain the solution:

$$\tilde{F}(P) \propto \frac{1}{P\sqrt{1+\frac{3P^2}{4\kappa^2}}} \sin\left(|s_0| \operatorname{arcsinh} \frac{\sqrt{3}P}{2\kappa}\right)$$

Solution valid for any κ , i.e. any negative energy! (consistent with Thomas collapse)

Obviously something is wrong

Vitaly Efimov in 1977

Efimov's breakthrough (1970)

V. Efimov, "Weakly-bound states of three resonantlyinteracting particles," Yad. Fiz., 12, 1080–1091, November 1970, [Sov. J. Nucl. Phys. 12, 589-595 (1971)].

V. Efimov, "Energy levels arising from resonant twobody forces in a three-body system." **Physics Letters B**, **33**, **563** – **564**, **1970**.

Derivation for three identical bosons

Hamiltonian in coordinate representation:

 $\widehat{H} = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{\hbar^2}{2m} \nabla_3^2 \quad \text{with the two-body condition } \Psi \xrightarrow[r_{ij} \to 0]{} \propto \frac{1}{r_{ij}} - \frac{1}{a}$ 1. Eliminate the centre of mass $\overrightarrow{R} = \overrightarrow{x}_1 + \overrightarrow{x}_2 + \overrightarrow{x}_3$

2. Express the remaining coordinates in terms of Jacobi coordinates:

$$\vec{r}_{ij} = \vec{x}_j - \vec{x}_i$$

 $\frac{\sqrt{3}}{2}\vec{\rho}_k = \vec{x}_k - \frac{\vec{x}_i + \vec{x}_j}{2}$

Schrödinger equation:

$$\left(-\nabla_{r_{12}}^2 - \nabla_{\rho_3}^2 - k^2\right)\Psi = 0$$

For a total energy $E = \hbar^2 k^2 / m$

3. Three-body physics > Efimov's breakthrough (1970)

Derivation for three identical bosons

3. Make the Faddeev decomposition:

$$\Psi = \chi(\vec{r}_{12}, \vec{\rho}_3) + \chi(\vec{r}_{23}, \vec{\rho}_1) + \chi(\vec{r}_{31}, \vec{\rho}_2)$$

$$= \chi(\vec{r}, \vec{\rho}) + \chi\left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right) + \chi\left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right)$$
Where χ satisfies
$$\left(-\nabla_r^2 - \nabla_\rho^2 - k^2\right)\chi(\vec{r}, \vec{\rho}) = 0$$

4. Apply the two-body condition $\Psi \xrightarrow[r_{ij} \to 0]{} \propto \frac{1}{r_{ij}} - \frac{1}{a} \quad \longleftrightarrow \quad \frac{\partial}{\partial r}(r\Psi) = -\frac{1}{a}(r\Psi) \text{ for } r \to 0$

3. Three-body physics > Efimov's breakthrough (1970)

Derivation for three identical bosons

3. Make the Faddeev decomposition:

$$\Psi = \chi(\vec{r}_{12}, \vec{\rho}_3) + \chi(\vec{r}_{23}, \vec{\rho}_1) + \chi(\vec{r}_{31}, \vec{\rho}_2)$$

$$= \chi(\vec{r}, \vec{\rho}) + \chi \left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) + \chi \left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right)$$
Where χ satisfies
$$\left(-\nabla_r^2 - \nabla_\rho^2 - k^2 \right) \chi(\vec{r}, \vec{\rho}) = 0$$

4. Apply the two-body condition $\Psi \xrightarrow[r_{ij} \to 0]{} \propto \frac{1}{r_{ij}} - \frac{1}{a} \quad \longleftrightarrow \quad \frac{\partial}{\partial r}(r\Psi) = -\frac{1}{a}(r\Psi) \text{ for } r \to 0$

$$\left[\frac{\partial}{\partial r}\left(r\chi(\vec{r},\vec{\rho})\right)\right]_{r\to0} + \left[\frac{\partial}{\partial r}\left(r\chi\left(-\frac{\sqrt{3}}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right)\right)\right]_{r\to0} + \left[\frac{\partial}{\partial r}\left(r\chi\left(-\frac{\sqrt{3}}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right)\right)\right]_{r\to0}$$

$$= -\frac{1}{a} \left[r \left(\chi(\vec{r}, \vec{\rho}) + \chi \left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) + \chi \left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) \right) \right]_{r \to 0}$$

$$\begin{split} \left[\frac{\partial}{\partial r} \left(r \chi(\vec{r}, \vec{\rho}) \right) \right]_{r \to 0} &+ \chi \left(\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right) + \chi \left(-\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right) \\ &= -\frac{1}{a} \left[r \left(\chi(\vec{r}, \vec{\rho}) + \chi \left(\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right) + \chi \left(-\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right) \right]_{r \to 0} \end{split}$$

3. Three-body physics > Efimov's breakthrough (1970)

Derivation for three identical bosons

3. Make the Faddeev decomposition:

$$\Psi = \chi(\vec{r}_{12}, \vec{\rho}_3) + \chi(\vec{r}_{23}, \vec{\rho}_1) + \chi(\vec{r}_{31}, \vec{\rho}_2)$$

$$= \chi(\vec{r}, \vec{\rho}) + \chi \left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) + \chi \left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right)$$
Where χ satisfies
$$\left(-\nabla_r^2 - \nabla_\rho^2 - k^2 \right) \chi(\vec{r}, \vec{\rho}) = 0$$

4. Apply the two-body condition $\Psi \xrightarrow[r_{ij} \to 0]{} \propto \frac{1}{r_{ij}} - \frac{1}{a} \quad \longleftrightarrow \quad \frac{\partial}{\partial r}(r\Psi) = -\frac{1}{a}(r\Psi) \text{ for } r \to 0$

$$\left[\frac{\partial}{\partial r}\left(r\chi(\vec{r},\vec{\rho})\right)\right]_{r\to0} + \left[\frac{\partial}{\partial r}\left(r\chi\left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right)\right)\right]_{r\to0} + \left[\frac{\partial}{\partial r}\left(r\chi\left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho}\right)\right)\right]_{r\to0}$$

$$= -\frac{1}{a} \left[r \left(\chi(\vec{r}, \vec{\rho}) + \chi \left(-\frac{1}{2}\vec{r} + \frac{\sqrt{3}}{2}\vec{\rho}, -\frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) + \chi \left(-\frac{1}{2}\vec{r} - \frac{\sqrt{3}}{2}\vec{\rho}, \frac{\sqrt{3}}{2}\vec{r} - \frac{1}{2}\vec{\rho} \right) \right) \right]_{r \to 0}$$

$$\begin{bmatrix} \frac{\partial}{\partial r} \left(r\chi(\vec{r},\vec{\rho}) \right) \end{bmatrix}_{r \to 0} + \chi \left(\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right) + \chi \left(-\frac{\sqrt{3}}{2} \vec{\rho}, -\frac{1}{2} \vec{\rho} \right)$$
$$= -\frac{1}{a} [r\chi(\vec{r},\vec{\rho})]_{r \to 0}$$

Derivation for three identical bosons

Equation:

 $\left(-\nabla_r^2-\nabla_\rho^2-k^2\right)\chi(\vec{r},\vec{\rho})=0$

Boundary condition $r \rightarrow 0$:

$$\left[\frac{\partial}{\partial r}\left(r\chi(\vec{r},\vec{\rho})\right)\right]_{r\to 0} + \chi\left(\frac{\sqrt{3}}{2}\vec{\rho},-\frac{1}{2}\vec{\rho}\right) + \chi\left(-\frac{\sqrt{3}}{2}\vec{\rho},-\frac{1}{2}\vec{\rho}\right) = -\frac{1}{a}\left[r\chi(\vec{r},\vec{\rho})\right]_{r\to 0}$$

5. Expand χ in partial waves. For a total angular momentum L = 0,

$$\chi(\vec{r},\vec{\rho}) = \frac{\chi_0(r,\rho)}{r\rho}$$

$$\left(-\frac{1}{r}\frac{\partial^2}{\partial r^2}r - \frac{1}{\rho}\frac{\partial^2}{\partial \rho^2}\rho - k^2 \right) \frac{\chi_0(r,\rho)}{r\rho} = 0 \quad \text{with } \left[\frac{\partial}{\partial r}\frac{\chi_0(r,\rho)}{\rho} \right]_{r\to 0} + 2 \times \frac{\chi_0\left(\frac{\sqrt{3}}{2}\rho, \frac{1}{2}\rho\right)}{\frac{\sqrt{3}}{2}\rho \cdot \frac{1}{2}\rho} = -\frac{1}{a}\frac{\chi_0(0,\rho)}{\rho}$$

$$\left(-\frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial \rho^2} - k^2 \right) \chi_0(r,\rho) = 0 \quad \text{with } \left[\frac{\partial}{\partial r}\chi_0(r,\rho) \right]_{r\to 0} + \frac{8}{\sqrt{3}\rho}\chi_0\left(\frac{\sqrt{3}}{2}\rho, \frac{1}{2}\rho\right) = -\frac{1}{a}\chi_0(0,\rho)$$

Derivation for three identical bosons

Equation:

Boundary condition $r \rightarrow 0$:

$$\left(-\frac{\partial^2}{\partial r^2} - \frac{\partial^2}{\partial \rho^2} - k^2\right)\chi_0(r,\rho) = 0 \qquad \left[\frac{\partial}{\partial r}\chi_0(r,\rho)\right]_{r\to 0} + \frac{8}{\sqrt{3}\rho}\chi_0\left(\frac{\sqrt{3}}{2}\rho, \frac{1}{2}\rho\right) = -\frac{1}{a}\chi_0(0,\rho)$$

- 6. Change the coordinates (r, ρ) to polar coordinates (R, α)
 - $r = R \sin \alpha$ $R = \sqrt{r^2 + \rho^2}$ (hyper-radius) $\rho = R \cos \alpha$ $\alpha = \arctan r/\rho$ (hyper-angle)

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} - \frac{1}{R^2}\frac{\partial^2}{\partial \alpha^2} - k^2\right)\chi_0(R,\alpha) = 0 \quad \text{with } \left[\frac{\partial}{\partial \alpha}\chi_0(R,\alpha)\right]_{\alpha \to 0} + \frac{8}{\sqrt{3}}\chi_0\left(R,\frac{\pi}{3}\right) = -\frac{R}{a}\chi_0(R,0)$$
Equation:

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} - \frac{1}{R^2}\frac{\partial^2}{\partial \alpha^2} - k^2\right)\chi_0(R,\alpha) = 0$$

Boundary condition $\alpha \rightarrow 0$:

$$\left[\frac{\partial}{\partial \alpha}\chi_0(R,\alpha)\right]_{\alpha\to 0} + \frac{8}{\sqrt{3}}\chi_0\left(R,\frac{\pi}{3}\right) = -\frac{R}{a}\chi_0(R,0)$$

Boundary condition $\alpha \to \frac{\pi}{2}$: $\chi_0(R, \frac{\pi}{2}) = 0$ $\chi(\vec{r},\vec{\rho}) = \frac{\chi_0(r,\rho)}{r\rho} \implies [\chi_0(r,\rho)]_{\rho\to 0} = 0$

7. At unitarity $a \to \infty$, the two boundary conditions are independent of R. Therefore, the problem becomes separable in R and α

Solutions of the form: $\chi_0(R, \alpha) = F_n(R)\phi_n(\alpha)$ Boundary condition $\alpha \rightarrow \frac{\pi}{2}$: OK

Eigenfunctions of
$$-\frac{\partial^2}{\partial \alpha^2} \phi_n(\alpha) = s_n^2 \phi_n(\alpha)$$
 $\phi_n(\alpha) = \sin\left(s_n\left(\frac{\pi}{2} - \alpha\right)\right)$

ρ

Boundary condition $\alpha \rightarrow 0$: $s_n \cos\left(\frac{s_n\pi}{2}\right) + \frac{8}{\sqrt{3}}\sin\left(\frac{s_n\pi}{6}\right) = 0$

Equation:

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} - \frac{1}{R^2}\frac{\partial^2}{\partial \alpha^2} - k^2\right)\chi_0(R,\alpha) = 0$$

Solutions of the form: $\chi_0(R, \alpha) = F_n(R)\phi_n(\alpha)$ Eigenfunctions of $-\frac{\partial^2}{\partial \alpha^2}$: $-\frac{\partial^2}{\partial \alpha^2}\phi_n(\alpha) = s_n^2\phi_n(\alpha)$ $\phi_n(\alpha) = \sin\left(s_n\left(\frac{\pi}{2} - \alpha\right)\right)$ $s_n\cos\left(\frac{s_n\pi}{2}\right)$

$$s_n \cos\left(\frac{s_n\pi}{2}\right) + \frac{8}{\sqrt{3}}\sin\left(\frac{s_n\pi}{6}\right) = 0$$

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} + \frac{s_n^2}{R^2} - k^2\right)F_n(R) = 0$$

$$\left(-\frac{\partial^2}{\partial R^2} + \frac{s_n^2 - \frac{1}{4}}{R^2} - k^2\right)\sqrt{R}F_n(R) = 0$$

$$\frac{V_n(R)}{V_n(R)}$$

Effective Schrödinger equation for the hyper-radius R

$$\left(-\frac{\partial^2}{\partial R^2} + \frac{s_n^2 - \frac{1}{4}}{R^2} - k^2\right)\sqrt{R}F_n(R) = 0$$
$$\frac{V_n(R)}{V_n(R)}$$

$$s_n \cos\left(\frac{s_n \pi}{2}\right) + \frac{8}{\sqrt{3}} \sin\left(\frac{s_n \pi}{6}\right) = 0$$

All s_n are real, except one: $s_0 = \pm i 1.00624$

For n = 0, one gets the Efimov attractive potential

$$(R) = -\frac{|s_0|^2 + \frac{1}{4}}{R^2}$$
 Scale invariance
 $R \to \lambda R$

olution *F* at energy
$$-\kappa^2$$

$$-\frac{\partial^2}{\partial R^2} + \frac{s_n^2 - \frac{1}{4}}{R^2} + \kappa^2 \int \sqrt{R}F_n(R) = 0$$
Solution *F* at energy $-\lambda^2 \kappa^2$
 $\left(-\frac{\partial^2}{\partial R^2} + \frac{s_n^2 - \frac{1}{4}}{R^2} + \lambda^2 \kappa^2\right) \sqrt{\lambda R}F_n(\lambda R) = 0$

Without boundary condition at short hyper-radius, the Efimov attraction allows any negative energy : **this illustrates the Thomas collapse!**

 V_0

Effective Schrödinger equation for the hyper-radius R

$$\left(-\frac{\partial^2}{\partial R^2} + \frac{s_n^2 - \frac{1}{4}}{R^2} - k^2\right)\sqrt{R}F_n(R) = 0$$
$$\frac{V_n(R)}{V_n(R)}$$

$$s_n \cos\left(\frac{s_n \pi}{2}\right) + \frac{8}{\sqrt{3}} \sin\left(\frac{s_n \pi}{6}\right) = 0$$

All s_n are real, except one: $s_0 = \pm i 1.00624$

$$V_0(R) = -\frac{|s_0|^2 + \frac{1}{4}}{R^2}$$

Discrete scale invariance $R \rightarrow \lambda_0 R$

The problem is due to the zero-range approximation. In reality, when the three particles come within distances of the order of b, the interaction potential sets a boundary condition for R. For small R, $F_0(R) = \alpha R^{i|s_0|} + \beta R^{-i|s_0|} \propto \cos(|s_0| \ln \Lambda R)$ Three-body parameter $F_0(\lambda R) \propto \cos(|s_0| \ln \Lambda \lambda R) = \cos(|s_0| \ln \Lambda R + |s_0| \ln \lambda) \propto F_0(R)$ $\lambda_0 = e^{\pi/|s_0|} \approx 22.7$ $E^{(n)} = E^{(0)} \lambda_0^{-2n}$

Generalised discrete scaling away from unitarity

Suppose we have a solution χ_0 of: Equation:

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} - \frac{1}{R^2}\frac{\partial^2}{\partial \alpha^2} + \kappa^2\right)\chi_0(R,\alpha) = 0$$

Boundary condition $\alpha \rightarrow 0$:

$$\left[\frac{\partial}{\partial\alpha}\chi_0(R,\alpha)\right]_{\alpha\to 0} + \frac{8}{\sqrt{3}}\chi_0\left(R,\frac{\pi}{3}\right) = -\frac{R}{a}\chi_0(R,0)$$

Discrete scaling: $R \rightarrow R/\lambda_0$

$$\left(-\frac{\partial^2}{\partial R^2} - \frac{1}{R}\frac{\partial}{\partial R} - \frac{1}{R^2}\frac{\partial^2}{\partial \alpha^2} + \lambda_0^{-2}\kappa^2\right)\chi_0(\lambda_0 R, \alpha) = 0 \qquad \left[\frac{\partial}{\partial \alpha}\chi_0(\lambda_0 R, \alpha)\right]_{\alpha \to 0} + \frac{8}{\sqrt{3}}\chi_0\left(\lambda_0 R, \frac{\pi}{3}\right) = -\frac{R}{\lambda_0 a}\chi_0(\lambda_0 R, 0)$$

i.e. we have a new solution for: $\begin{array}{l} a \to \lambda_0 a \\ \kappa \to \kappa/\lambda_0 \end{array}$ $(a^{-1}, \kappa) \to (a^{-1}, \kappa)/\lambda_0$

"Efimov spectrum"

1. Discrete scale invariance Infinite number of threebody bound states.

2. Borromean states

Three-body bound states without two-body bound states.

Three bosons

Strength of the two-body attractive interaction g

What is the shape of an Efimov state?

No definite shape (fluctuating) but a tendency to form elongated triangles

 $\Psi = \chi(\vec{r}_{12}, \vec{\rho}_3) + \chi(\vec{r}_{23}, \vec{\rho}_1) + \chi(\vec{r}_{31}, \vec{\rho}_2)$ $= \frac{\chi_0(r_{12},\rho_3)}{1} + \frac{\chi_0(r_{23},\rho_1)}{1} + \frac{\chi_0(r_{31},\rho_2)}{1}$ Partial wave L = 0 $r_{12} \rho_{3}$ $r_{23} \rho_1$ Hyperspherical coordinates: $= \frac{2}{R^2} \left(\frac{\chi_0(R, \alpha_3)}{\sin 2\alpha_3} + \frac{\chi_0(R, \alpha_1)}{\sin 2\alpha_1} + \frac{\chi_0(R, \alpha_2)}{\sin 2\alpha_2} \right)$ $r = R \sin \alpha$ $\rho = R \cos \alpha$ $=\frac{2F(R)}{R^2}\left(\frac{\phi_0(\alpha_3)}{\sin 2\alpha_3}+\frac{\phi_0(\alpha_1)}{\sin 2\alpha_1}+\frac{\phi_0(\alpha_2)}{\sin 2\alpha_2}\right)$ $\chi_0(R, \alpha) = F(R)\phi_0(\alpha)$ at unitarity with $\phi_0(\alpha) = \sinh\left(|s_0|\left(\frac{\pi}{2} - \alpha\right)\right)$ Hyper-radial Hyper-angular (size) $\Phi_0(\alpha_3, \theta_3)$ (shape)

3. Three-body physics > Efimov states > Geometry

Why long range ? in spite of short-range two-body interactions?

The Efimov attraction may be viewed as an interaction between two particles mediated by a third particle

Similar to:

Chemical covalent bonding (exchange of electron)

Nuclear force (exchange of virtual meson)

Overview of universal clusters

Experimental observations The triton The Hoyle state The helium trimers Observations in cold atomic gases Mixtures of particles 1+2 particles : the Born approximation Mixtures of two two kinds of bosons Mixtures of two kinds of fermions Halo nuclei

The triton (2 neutrons + 1 proton)

Qualitatively consistent, but not the best example.

The Hoyle state of carbon-12

Originally suggested in V. Efimov's first paper

No clear evidence.

The helium triatomic molecules ⁴He₃

The helium triatomic molecules ⁴He₃

The helium triatomic molecules ⁴He₃

Kunitski, Science 348, 551 (2015) (Reinhard Dörner, Frankfurt)

⁴He

Ozone molecule

Ozone molecule

~

Helium trimer ground state

Helium trimer excited state (Efimov state)

Ozone molecule

~

Helium trimer ground state

Helium trimer excited state (Efimov state)

Observations in ultra-cold atomic gases

4. Overview > Trimers in ultra-cold gases

Vitaly Efimov and Rudolf Grimm receive the first Faddeev medal in Caen (July 11, 2018)

Vitaly Efimov's speech after receiving the prize

Observations in ultra-cold atomic gases

Observation with three distinguishable states of lithium atoms

(Heidelberg, Tokyo)

4. Overview > Identical bosons

4. Overview > Identical bosons

Mixtures

Particles of different statistics (bosons, fermions) Particles of different masses Particles in different spin states

4. Overview > Mixtures > Bosons and fermions (spinless)

1 particle interacting with 2 identical particles

(no interaction between the two identical particles)

The Born-Oppenheimer approximation

 $\Psi(\vec{R}, \vec{r}) = F(\vec{R})\phi(\vec{r}; \vec{R})$ (like an electron with two nuclei)

Solve the motion of the light particle in presence of the 2 heavy particles:

$$-\frac{\hbar^2}{2m}\nabla_r^2\phi(\vec{r};\vec{R}) = -\frac{\hbar^2\kappa(R)^2}{2m}\phi(\vec{r};\vec{R})$$

and the two-body conditions

Born-Oppenheimer potential

Lowest energy solution:

Motion of the heavy particles:

$$\left(-\frac{\hbar^2}{M}\nabla_R^2 - \frac{\hbar^2\kappa(R)^2}{2m}\right)F(\vec{R}) = EF(\vec{R})$$

For a certain angular momentum *L* between the two heavy particles:

$$F(\vec{R}) = \frac{u_L(R)}{R} P_L(\cos\theta)$$

$$\left(-\frac{d^2}{dR^2} + \frac{L(L+1)}{R^2} - \frac{M}{2m}\frac{\Omega^2}{R^2}\right)u_L(R) = \frac{ME}{\hbar^2}u_L(R)$$
The Born-Oppenheimer approximation

For L = 0

Efimov effect

physics depend on a and Λ Stronger for large mass ratio M/m

The Born-Oppenheimer approximation

For L = 1

Mixtures of two kinds of bosons

Mixtures of two kinds of bosons

4. Overview > Mixtures > Mixtures of two kinds of fermions

Two kinds of fermions with spin

(All pairs can interact in the s wave)

Halo nuclei

Two-body van der Waals universality The three-body parameter and its van der Waals universality

Other classes of universalities

Two neutral atoms

Solution of the $-C_6/r^6$ potential

Solution of the $-C_6/r^6$ potential at zero energy

$$u''(x) + \frac{16}{x^6}u(x) = 0$$

Solution of the $-C_6/r^6$ potential at zero energy

$$u''(x) + \frac{16}{x^6}u(x) = 0$$

Change of variable:
$$u(x) \equiv x^{1/2} v(2x^{-2})$$

 $u'(x) = x^{\frac{1}{2}} \times (-4x^{-3})v' + \frac{1}{2}x^{-\frac{1}{2}} \times v$ y
 $u'(x) = -4x^{-5/2}v' + \frac{1}{2}x^{-\frac{1}{2}}v$
 $u''(x) = -4x^{-5/2} \times (-4x^{-3})v'' + 10x^{-7/2}v' + \frac{1}{2}x^{-\frac{1}{2}}(-4x^{-3})v' - \frac{1}{4}x^{-\frac{3}{2}} \times v$
 $u''(x) = 16x^{-\frac{11}{2}}v'' + 8x^{-\frac{7}{2}}v' - \frac{1}{4}x^{-\frac{3}{2}}v$
 $\times \frac{1}{4}x^{3/2}$
 $16x^{-\frac{11}{2}}v'' + 8x^{-\frac{7}{2}}v' - \frac{1}{4}x^{-\frac{3}{2}}v + 16x^{-11/2}v = 0$
 $4x^{-4}v'' + 2x^{-2}v' - \frac{1}{16}v + 4x^{-4}v = 0$
 $y^2v'' + yv' - \frac{1}{16}v + y^2v = 0$
 $y^2v'' + yv' + (y^2 - \alpha^2)v = 0$
Bessel equation
with $\alpha = \pm 1/4$

The solutions are linear combinations of Bessel functions:

$$v(y) = \alpha J_{-\frac{1}{4}}(y) + \beta J_{\frac{1}{4}}(y)$$
$$u(x) = \sqrt{x} \left(\alpha J_{-\frac{1}{4}}(2x^{-2}) + \beta J_{\frac{1}{4}}(2x^{-2}) \right)$$

Solution of the $-C_6/r^6$ potential at zero energy

$$u(r) = f(r) - \frac{a}{l_{vdW}}g(r)$$

Van der Waals length

$$l_{vdW} = \frac{1}{2} \left(\frac{mC_6}{\hbar^2} \right)^{1/4}$$

Solution of the $-C_6/r^6$ potential at negative energy

Van der Waals length

l_{vdW}/a

Solution of the $-C_6/r^6$ potential at negative energy

Example: Ytterbium isotopes

Kitagawa et al. Phys Rev A 77, 012719 (2008)

In the zero-range theory, the threebody has to be introduced "by hand" as an extra boundary condition to quantise the spectrum:

 $a_{-} = -1.50763/\kappa_{*}$

For a system with finite-range interactions, the spectrum is bounded from below and the three-body parameter is set from the two-body or three-body interactions

$$\kappa_* = \lim_{n \to \infty} \kappa_*^{(n)} e^{-n\pi/|s_0|}$$
$$a_- = \lim_{n \to \infty} a_-^{(n)} e^{n\pi/|s_0|}$$

Question: what in the interaction potentials determines the value of the three-body parameter?

Range of two-body forces? What about three-body forces?

van der Waals length $l_{\rm vdW}$ (nm)

The potential between two atoms has a van der Waals tail:

$$V(r) \xrightarrow[r \to \infty]{} - C_6/r^6$$

/an der Waals length
$$l_{vdW} = \frac{1}{2} \left(\frac{mC_6}{\hbar^2} \right)^{1/4}$$

Is it quantum reflexion?

The three-body parameter

Is it quantum reflexion? No.

J. Wang, J. D'Incao, B. Esry, and C. Greene, "Origin of the Three-Body Parameter Universality in *Efimov Physics.*" Phys. Rev. Lett., 108, 263001 (2012).

Adiabatic Hyperspherical Representation:

$$\Psi = \sum_{n} F_n(R) \Phi_n(\theta, \alpha; R)$$

$$\left(-\frac{d^2}{dR^2} + W_n(R) - E\right) F_n(R) + \sum_{n' \neq n} W_{n,n'}(R) F_{n'}(R) = 0$$

Hyper-radius RHyper-angle α Solved for various two-body interactions with a van der Waals tail. In the limit of deep van der Waals interactions:

$$r = R \sin \alpha$$
$$\rho = R \cos \alpha$$

$$\kappa_*^{(0)} = (0.21 \pm 0.01) / \ell_{\rm vdW}$$

$$a_{-}^{(0)} = -(10.70 \pm 0.35) \,\ell_{\rm vdW}$$

Three-body repulsive barrier

What is the origin of the three-body repulsion? (how can we get repulsion from purely attractive interactions?)

Two-body van der Waals universality

Universal suppression of probability for

Analytical solution at zero energy $=_{r \gtrsim \ell_{\rm vdW}} \Gamma(5/4) \sqrt{x} J_{\frac{1}{4}}(2x^{-2})$

 $x = r/\ell_{\rm vdW}$

Consequence for three-body:

Suppressed configurations for $r_{ij} \leq l_{vdW}$

The three-body parameter

..

P. Naidon, S. Endo, and M. Ueda, "*Physical origin of the universal three-body parameter in atomic Efimov physics*" Phys. Rev. A **90**, 022106 (2014)

Approximate ansatz to check this interpretation:

1) Pair correlation ansatz

$$\Phi_0(\alpha,\theta;R) = \Phi_0^{(ZR)}(\alpha,\theta) \times \varphi(r_{12})\varphi(r_{23})\varphi(r_{31})$$

2) Separable potential model

with

$$V(r) = -C_6/r^6$$

$$\psi_0(\vec{r}) = \varphi(r)/r$$

2) Separable potential model

$$\hat{V} = \frac{1}{\langle \psi_0 | V | \psi_0 \rangle} V | \psi_0 \rangle \langle \psi_0 | V \quad \text{with} \\ V(r) = -C_6/r^6 \\ \psi_0(\vec{r}) = \varphi(r)/r \end{cases}$$

The solution of the true potential at zero energy: $(\hat{T} + V)|\psi_0\rangle = 0$

is also the solution of the separable potential at zero energy:

$$\begin{aligned} \left(\hat{T} + \hat{V}\right) |\psi_0\rangle &= \left(\hat{T} + \frac{1}{\langle\psi_0|V|\psi_0\rangle} V |\psi_0\rangle \langle\psi_0|V\right) |\psi_0\rangle \\ &= \left(\hat{T} |\psi_0\rangle + \frac{1}{\langle\psi_0|V|\psi_0\rangle} V |\psi_0\rangle \langle\psi_0|V|\psi_0\rangle \right) \\ &= \left(\hat{T} + V\right) |\psi_0\rangle = 0 \end{aligned}$$

This separable potential is an approximation that reproduces exactly the zero-energy twobody wave function of the true potential

Three-body treatment (for negative energy $E = -\hbar^2 \kappa^2 / m$) 2) Separable potential model

$$\left(\frac{3}{4}P^{2} + p^{2} + \kappa^{2}\right)\widetilde{\Psi}(\vec{P},\vec{p}) = \sum_{i=1,2,3} \phi_{i}(\vec{p}_{i}) \underbrace{\frac{2\mu}{\hbar^{2}} g_{i} \int d^{3}p_{i} \phi_{i}^{*}(\vec{p}_{i}) \widetilde{\Psi}(\vec{P},\vec{p})}{4\pi \tilde{F}_{i}(\vec{P}_{i})} \quad \text{with} \quad \frac{4\pi \hbar^{2}}{m} \frac{1}{g_{i}} \tilde{F}_{i}(\vec{P}_{i}) = \int d^{3}p_{k} \phi_{i}^{*}(\vec{p}_{i}) \widetilde{\Psi}(\vec{P},\vec{p}) \\ \widetilde{\Psi}(\vec{P},\vec{p}) = \frac{4\pi \sum_{i=1,2,3} \phi_{i}(\vec{p}_{i}) \tilde{F}_{i}(\vec{P}_{i})}{\frac{3}{4}P^{2} + p^{2} + \kappa^{2}} \quad \text{(2)}$$

$$Generalised Skorniakov - Ter-Martirosian integral equations:}$$

$$\left(\frac{4\pi\hbar^2}{m}\frac{1}{g_k} + \frac{2}{\pi}\int_0^\infty \frac{q^2|\phi_k(\vec{q})|^2}{q^2 + \frac{3}{4}P^2 + \kappa^2}dq\right)\tilde{F}_k(\vec{P}) + 4\pi\int\frac{d^3Q}{(2\pi)^3}\phi_k^*\left(\vec{Q} + \vec{P}/2\right)\frac{\phi\left(\vec{P} + \frac{\vec{Q}}{2}\right)\tilde{F}_i(\vec{Q}) + \phi\left(\vec{P} - \frac{\vec{Q}}{2}\right)\tilde{F}_j(\vec{Q})}{P^2 + Q^2 + \vec{Q}\cdot\vec{P} + \kappa^2} = 0$$

function has only 1 argument!

 $\widetilde{\Psi}(\vec{P},\vec{p}) \longrightarrow \widetilde{F}(\vec{P})$

with $\{i, j, k\} = \{1, 2, 3\}$

2) Separable potential model

Three-body treatment (for negative energy $E = -\hbar^2 \kappa^2 / m$)

$$\widetilde{\Psi}(\vec{P}, \vec{p}) = \frac{4\pi \sum_{i=1,2,3} \phi_i(\vec{p}_i) \widetilde{F}_i(\vec{P}_i)}{\frac{3}{4}P^2 + p^2 + \kappa^2} \longrightarrow \widetilde{\Psi}(\rho, r, \theta) = \widetilde{\Psi}(R, \alpha, \theta)$$
Fourier
transform
$$\int d^3 \vec{r} d^3 \vec{\rho} |\Psi|^2 = \int_0^\infty 4\pi r^2 dr \int_0^\infty 2\pi \rho^2 d\rho \int_0^\pi d(\cos\theta) |\Psi|^2$$

$$= (4\pi)^2 \int_0^\infty dR \int_0^{\frac{\pi}{2}} d\alpha (R \sin\alpha)^2 (R \cos\alpha)^2 \int_0^\pi d(\cos\theta) |\Psi|^2$$
Hyper-radial probability density $|f(R)|^2$
Effective Schrödinger equation: $-\frac{d^2 f}{dR^2} + W(R)f(R) = Ef(R)$

Effective potential:

$$W(R) = E + \frac{f''(R)}{f(R)}$$

2) Separable potential model

Three-body treatment (for negative energy $E = -\hbar^2 \kappa^2 / m$)

$$\kappa_*^{(0)} = 0.187(1)\ell_{vdW}^{-1}$$

$$a_-^{(0)} = -10.86(1)\ell_{vdW}$$
Close to the exact results:
$$\kappa_*^{(0)} = (0.21 \pm 0.01)/\ell_{vdW}$$

$$a_-^{(0)} = -(10.70 \pm 0.35)\ell_{vdW}$$

Conclusion

Universal few-body physics has been a developing field of quantum few-body physics, both theoretical and experimental, unveiling a whole collection of universal few-body states with remarkable properties.

Review papers

arXiv:1610.09805

Rev. Mod. Phys. 89, 035006 (2017) arXiv:1704.02029

