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MVM: dynamics evolution

The MVM dynamics evolution is as follows.

Initially, we have a spin variable σ with values ±1 at each
node of the network.

At each time step, we try to spin-flip a node.

The flip is accepted with probability

wi (σ) =
1

2

[
1− (1− 2q)σiS

( ki∑
δ=1

σi+δ

)]
, S(x) =


1, if x > 0;

0, if x = 0;

-1, if x < 0;

(1)

The i site can follow the neighboring majority opinion with
probability q (”Social Temperature”) and the minority sign
with probability p = 1− q

S(x) is a signal function, associated to neighborhood majority
opinion and sum runs over the number ki of neighbors of i-th
spin.
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MVM - signal function S(x)

Figura: Signal function S(x).
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BCS model-discreet version: dynamics evolution-Pairwise
interactions

The Kinetic Monte Carlo rules of the BCS model are written as
follows:

(i) For each network site, one agent or individual is assigned
with discrete opinion variables oi (t) between only three values
−1, 0, and +1.

(ii) For each time step, we randomly select a network site to
be updated;

(iii) Next, we randomly select only one of its bonds and
choose the affinity µij of the bond for every pass of the
dynamics. Here, the affinity parameter is a discrete variable
and assumes a value +1, which can be turned negative with a
probability q. The parameter q acts as external noise,
modeling local discordances;
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BCS - Biswas-Chatterjee-Sen model

(iv) The two sites i and j that share the selected bond are
updated according to the following:

oi (t + 1) = oi (t) + µijoj (t) , (2)

oj (t + 1) = oj (t) + µijoi (t) , (3)

where the variables oi (t) and oj (t) are the previous opinion
states while the oi (t + 1) and oj (t + 1) stand for the updated
opinion states of the two sites i and j , respectively.

(v) If any updated opinion state is larger (lower) than +1
(−1), then it is made equal to +1 (−1), to preserve the
opinion states in the interval [−1, 1].
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Complex Networks: Barabási-Albert networks, Erdös-Rényi
random graphs, Apollonian networks

Figura: Third generation of the Apollonian network before (a) and after
(b) redirecting the links with probability p = 0.1. In (a) the black arrows
represent all (incoming and outgoing) links, whereas in (b) the red arrows
indicate the preserved incoming links, and the blue arrows indicate the
redirected outgoing links. The black arrows indicate links not affected by
redirecting.
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Observables

Order Parameter or average opinion in the time step

O = |
N∑
i

oi |/N. (4)

Order Parameter in function of noise q

O(q) =

[
〈O〉t

]
av

, (5)

Susceptibility

OF (q) = N

[
〈O2〉t − 〈O〉2t

]
av

, (6)

Binder cumulant

O4(q) = 1−
[
〈O4〉t

3〈O2〉2t

]
av

, (7)
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Finite-size scaling relations

O(q) = N−β/ν fO((q − qc )N1/ν), (8)

OF (q) = Nγ/ν fOF ((q − qc )N1/ν), (9)

where ν, β, and γ are the usual critical exponents of the
correlation length, order parameter and susceptibility, respectively.
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Results: directed Barabási-Albert networks
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Figura: Critical exponents ratio β/ν and γ/ν, and half value of the
effective dimension Deff as a function of the connectivity z . Full symbols
correspond to the present BCS model, and open symbols to the MVM ,
both on the same DBAN. Full and dashed lines are only guide to the eyes.
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Results: directed Small-World-Apollonian networks
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Figura: The effective dimension Deff (a), critical exponents ratio β/ν (b)
and critical exponents ratio γ/ν (c) as a function of the probability p.
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Results: Erdös-Rènyi random graphs
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Figura: Deff , β/ν, γ/ν as a function of the connectivity z . DER(left) and
ER(right).
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Results: Erdös-Rènyi random graphs
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Figura: Deff , β/ν, γ/ν as a function of the connectivity z . BCS (left)
and MVM (right) model.
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Conclusion

Finaly, we can see that for both models, the ratio exponents can
be in different universality class:

Ising exponents’: BCS and MVM on square lattice

Mean-Field: BCS on Barabási-Albert newtorks (continuos
opinions)

Other: BCS and MVM on directed Small-World-Apollonian
networks, Erdös-Rènyi random graphs, and directed
Barabási-Albert newtorks.
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Big master and friend

Figura: Dietrich Stauffer- 2005 until 2019.
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