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All Four Lectures At A Glance

Lecture 1:
1D fermions →
Tunneling 
dynamics.

Lecture 2:
Helium dimer →
Dissociative 
dynamics.

Lecture 3:
Spin-orbit coupling →
Fate of  discrete 
scale invariance?

Interaction fully 
characterized by s-
wave scattering 
length. Trap-shape 
non-universal.

Initial state nearly 
fully universal. 
Laser-molecule 
interaction acts in 
non-universal region.  

Two-body interactions 
lead to two-parameter 
Efimov scenario.
Single-particle dispersion 
leads to generalized 
radial scaling law (five-
parameter Efimov
scenario).  

Lecture 4:
Emitter(s) coupled to bath →
Radiation dynamics.



Emitter(s) Coupled to Cavity Array

Lecture 4:
Emitter(s) coupled to cavity array →
Radiation dynamics.

Very rough idea:

Emitter = two-level system
(atom, quantum dot,…): States 
| ⟩𝒆 and | ⟩𝒈 .

Initialize in | ⟩𝒆 .

How does probability 𝑷𝒆 to be in 
state | ⟩𝒆 change?

Depends on 
• how the emitter is coupled to 

cavity array and
• the characteristics of  the 

cavity array. 

Want to consider situation 
where the cavity array 
exhibits universal physics.
More specifically, want 
universal two-body bound 
state.



Broad Motivation

matter ~ environment or bath

probe ~ system

coupling g

Very broad motivation of  our 
work:

What can we learn by having 
two probes as opposed to 
one probe? 
We gain access to spatial 
correlations (not accessible 
with one probe).

How much more information 
can we extract if  we use two 
probes that are entangled?



More Specifically

matter ~ environment or bath
photonic crystal with Kerr-

like non-linearity (non-trivial 
mode structure)

probe ~ system
two two-level emitters

coupling g

Perspective 1:
Use the mode structure of  
the environment to modify 
the radiance of  the system 
(e.g., super- and sub-
radiance).

Perspective 2:
Deduce the mode structure 
from the dynamics of  the 
probe. 



How Does Cavity Array Look Like? 

Want to consider situation 
where the cavity array 
exhibits universal physics.
More specifically, want 
universal two-body bound 
state.

Tight-binding + non-linearity:

tunneling 𝑱

onsite interaction 𝑼

single-mode 
cavity 𝝎𝒄

If  we want to have a bound 
state, then we need to have 
photon-photon interactions: 
assume presence of  Kerr-like 
non-linearity (𝑼 ≠ 𝟎).
This is an effective or induced
interaction (photons are 
massless and non-interacting).

Discrete space:
𝒏 = 𝟏, 𝟐,⋯ ,𝑵!

-𝒏𝒏(-𝒏𝒏 − 𝟏)



Photon-Photon Bound State: 
When Is It Universal? 

Figure from A. Piper, D. V. Timotijevic, 
and D. M. Jovic, Phys. Scr. T157, 014023 
(2013).

Images of  1D and 2D photonic crystals

Question: If  we have a regular crystal 
structure with lattice spacing 𝒂, what is 
the condition on the size of  the two-body 
bound state for the state to be universal? 



Cavity Array With Single Excitation

Tight-binding + non-linearity:

tunneling 𝑱 single-mode 
cavity 𝝎𝒄
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Photons can leak 
through the mirrors 
due to imperfections

Two mirrors 
form a cavity



Cavity Array With Single Excitation

Tight-binding + non-linearity:
Single-photon energy:
𝑬𝒌 = ℏ𝝎𝒄 − 𝟐𝑱 𝐜𝐨𝐬 𝒌𝒂 .

Single-photon wave number 
𝒌 is a good quantum number:
𝒌𝒂 ∈ −𝝅, 𝝅 .
Energy band of  width 𝟒𝑱.

Since 2𝑵, 2𝑯𝒃 = 𝟎, the 
Hamiltonian 2𝑯𝒃 can be 
diagonalized separately for
2𝑵 = 𝟏, 𝟐,⋯.

Photon number operator:
2𝑵 = ∑𝒏%𝟏𝑵 9𝒂𝒏9𝒂𝒏

(.
Approximately quadratic 
around 𝒌 = 𝟎 but not near 
band edge: Non-trivial 
single-particle dispersion.

Group velocity: 𝒗𝒈 = ℏ*𝟏 𝝏𝑬𝒌
𝝏𝒌

⟹ 𝒗𝒈 =
𝟐𝑱𝒂
ℏ
𝐬𝐢𝐧 𝒌𝒂 .



Cavity Array With Single Excitation

Tight-binding + non-linearity: Question: 
How far does single 
photon travel during 
characteristic time?

Sub-question: 
What is the characteristic 
time of  the cavity array?Group velocity: 𝒗𝒈 = ℏ*𝟏 𝝏𝑬𝒌

𝝏𝒌
⇒ 𝒗𝒈=

𝟐𝑱𝒂
ℏ
𝐬𝐢𝐧 𝒌𝒂 .



Cavity Array With Single Excitation

Tight-binding + non-linearity: Question: What is the effective 
mass of  the photons “trapped” 
in the cavity array? 

Group velocity: 𝒗𝒈 = ℏ*𝟏 𝝏𝑬𝒌
𝝏𝒌

⟹ 𝒗𝒈=
𝟐𝑱𝒂
ℏ
𝐬𝐢𝐧 𝒌𝒂 .



Single Emitter:
Single-Excitation Bound State

tight-binding + non-linearity
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change as the emitter separation x increases from 0 to 1.
Implications of our results for deriving a master equation
are discussed; A follow-up publication will show that our
master equation disagrees with that presented in Ref. [?
]. We identify a regime where the results can be under-
stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.

The remainder of this article is organized as follows.
Section II introduces the model Hamiltonian and our
approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.

II. THEORY CONSIDERATIONS

A. Model Hamiltonian

The total Hamiltonian Ĥ is given by

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs denotes the system Hamiltonian, Ĥb the bath
Hamiltonian, and Ĥsb the system-bath coupling. We con-
sider a system consisting of Ne = 2 two-level emitters
with energy separation ~!e between the excited state |eij
and the ground state |gij of the jth emitter. Specifically,

Ĥs is given by

Ĥs =
~!e

2

NeX

j=1

�
�̂
z
j + 1̂j

�
, (2)

where �̂z
j denotes a diagonal Pauli matrix, �̂z

j = |eijhe|�
|gijhg|. The jth emitter is coupled to the njth lattice site
of the wave guide, i.e., the emitters do not move during
the dynamics. The operator 1̂j , 1̂j = |gijhg| + |eijhe|,
shifts the energy so that the energy of the jth emitter in
the ground state |gij vanishes.

Triggered by the system-bath Hamiltonain Ĥsb with
coupling strength g, the emitters can change their state
from |eij to |gij and from |gij to |eij ,

Ĥsb = g

NeX

j=1

⇣
ânj �̂

+
j + â

†
nj
�̂
�
j

⌘
. (3)

Here, �̂+
j and �̂

�
j denote raising and lowering operators

of the jth emitter, �̂+
j = |eijhg| and �̂

�
j = |gijhe|. The

operators â
†
nj

and ânj respectively create and destroy a
photon at lattice site nj , where the label nj takes values
from 1 to N (N denotes the number of lattice sites or
cavities of the wave guide).

The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :

Ĥb = ~!c

NX

n=1

â
†
nân � J

NX

n=1

⇣
â
†
nân+1 + â

†
n+1ân
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+
U

2

NX

n=1

â
†
nâ

†
nânân. (4)

In Eq. (4), the photons are assumed to interact, due to
the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission

dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
the schematic is informed by the calculations and anal-
ysis presented in the following sections, several aspects
of Fig. 1 can be understood intuitively. For g ! 1,
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change as the emitter separation x increases from 0 to 1.
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The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :
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stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.
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approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.
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A. Model Hamiltonian

The total Hamiltonian Ĥ is given by

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs denotes the system Hamiltonian, Ĥb the bath
Hamiltonian, and Ĥsb the system-bath coupling. We con-
sider a system consisting of Ne = 2 two-level emitters
with energy separation ~!e between the excited state |eij
and the ground state |gij of the jth emitter. Specifically,
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The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :
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nâ

†
nânân. (4)

In Eq. (4), the photons are assumed to interact, due to
the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission

dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
the schematic is informed by the calculations and anal-
ysis presented in the following sections, several aspects
of Fig. 1 can be understood intuitively. For g ! 1,

Figure taken from Shi, Wu, 
Gonzalez-Tudela, and Cirac, 
PRX 6, 021027 (2016).

Emitter-photon bound 
state! Superposition of  

| ⟩𝒆 and | ⟩𝒈 .



Cavity Array With Two Excitations

Tight-binding + non-linearity:

We have 𝒌𝟏 and 𝒌𝟐.

Just as in the “usual” case, it 
turns out to be convenient to 
switch to relative and center-of-
mass wave vectors: 𝒒 and 𝑲. 
𝑲 is a good quantum number.

For 𝑼 = 𝟎:

𝑬𝒒,𝑲 = 𝑬𝒌𝟏 + 𝑬𝒌𝟐 =

𝟐ℏ𝝎𝒄 − 𝟒𝑱 𝐜𝐨𝐬
𝑲𝒂
𝟐

𝐜𝐨𝐬 𝒒𝒂 =

𝟐ℏ𝝎𝒄 − 𝟐𝑱𝑲 𝐜𝐨𝐬 𝒒𝒂

𝑬𝒒,𝑲 depends parametrically on 
𝑲.

For each 𝑲, 𝒒 can take a range 
of  values: energy band or 
scattering continuum.



Cavity Array With Two Excitations

Tight-binding + non-linearity:
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For 𝑼 = 𝟎:

𝑬𝒒,𝑲 = 𝑬𝒌𝟏 + 𝑬𝒌𝟐 =
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scattering
continuum

For each 𝑲, 𝒒 can take a range 
of  values: energy band or 
scattering continuum.
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Cavity Array With Two Excitations

Tight-binding + non-linearity:

For 𝑼 ≠ 𝟎: Scattering continuum 
is unchanged (does not depend 
on 𝑼).
However, there also exists exactly 
one two-photon bound state:

𝑬𝑲,𝒃 = 𝟐ℏ𝝎𝒄 + 𝐬𝐢𝐠𝐧(𝑼) 𝑼𝟐 + 𝟏𝟔𝑱𝟐𝐜𝐨𝐬𝟐
𝑲𝒂
𝟐

𝟏/𝟐

two-photon 
scattering
continuum

Negative 𝑼: 

𝑼
𝑱
= −𝟏

𝑼
𝑱
= −𝟒
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Cavity Array With Two Excitations

Tight-binding + non-linearity:

Question: 
What is the binding energy of  
“red” state?
What is the binding energy of  
“blue” state? 

two-photon 
scattering
continuum

Negative 𝑼: 

𝑼
𝑱
= −𝟏

𝑼
𝑱
= −𝟒



-1 -0.5 0 0.5 1
K a / π

-4

0

4

(E
 - 

2h_
ω

c) /
 J

Cavity Array With Two Excitations

Tight-binding + non-linearity:

For 𝑼 ≠ 𝟎: Scattering continuum 
is unchanged (does not depend 
on 𝑼).
However, there also exists exactly 
one two-photon bound state:

𝑬𝑲,𝒃 = 𝟐ℏ𝝎𝒄 + 𝐬𝐢𝐠𝐧(𝑼) 𝑼𝟐 + 𝟏𝟔𝑱𝟐𝐜𝐨𝐬𝟐
𝑲𝒂
𝟐

𝟏/𝟐

two-photon 
scattering
continuum

Repulsively bound pair!!!

Positive 𝑼: 

𝑼
𝑱
= 𝟏

𝑼
𝑱
= 𝟒
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Three-Body Bound States?

• Same tight-binding Hamiltonian as discussed here 
supports deeply-bound and weakly-bound three-body 
states (“3” and “2+1” states). See M. Valiente, D. 
Petrosyan, and A. Saenz, PRA 81, 011601(R) (2010) for 
details.

• Anisotropic Heisenberg model: Collective excitations in 
quantum magnets (magnons) exhibit Efimov effect. See Y. 
Nishida, Y. Kato, and C. D. Batista, Nat. Phys. 9, 93 (2013) 
for details. 
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change as the emitter separation x increases from 0 to 1.
Implications of our results for deriving a master equation
are discussed; A follow-up publication will show that our
master equation disagrees with that presented in Ref. [?
]. We identify a regime where the results can be under-
stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.

The remainder of this article is organized as follows.
Section II introduces the model Hamiltonian and our
approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.

II. THEORY CONSIDERATIONS

A. Model Hamiltonian

The total Hamiltonian Ĥ is given by

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs denotes the system Hamiltonian, Ĥb the bath
Hamiltonian, and Ĥsb the system-bath coupling. We con-
sider a system consisting of Ne = 2 two-level emitters
with energy separation ~!e between the excited state |eij
and the ground state |gij of the jth emitter. Specifically,

Ĥs is given by

Ĥs =
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where �̂z
j denotes a diagonal Pauli matrix, �̂z

j = |eijhe|�
|gijhg|. The jth emitter is coupled to the njth lattice site
of the wave guide, i.e., the emitters do not move during
the dynamics. The operator 1̂j , 1̂j = |gijhg| + |eijhe|,
shifts the energy so that the energy of the jth emitter in
the ground state |gij vanishes.

Triggered by the system-bath Hamiltonain Ĥsb with
coupling strength g, the emitters can change their state
from |eij to |gij and from |gij to |eij ,
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j denote raising and lowering operators

of the jth emitter, �̂+
j = |eijhg| and �̂
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j = |gijhe|. The

operators â
†
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and ânj respectively create and destroy a
photon at lattice site nj , where the label nj takes values
from 1 to N (N denotes the number of lattice sites or
cavities of the wave guide).

The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :
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â
†
nâ
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In Eq. (4), the photons are assumed to interact, due to
the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission

dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
the schematic is informed by the calculations and anal-
ysis presented in the following sections, several aspects
of Fig. 1 can be understood intuitively. For g ! 1,
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â
†
nân+1 + â
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Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
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the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission

dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
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analytically (see below). (ii) Despite its simplicity, the
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†
nj
�̂
�
j

⌘
. (3)

Here, �̂+
j and �̂

�
j denote raising and lowering operators

of the jth emitter, �̂+
j = |eijhg| and �̂

�
j = |gijhe|. The

operators â
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pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
the schematic is informed by the calculations and anal-
ysis presented in the following sections, several aspects
of Fig. 1 can be understood intuitively. For g ! 1,
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are discussed; A follow-up publication will show that our
master equation disagrees with that presented in Ref. [?
]. We identify a regime where the results can be under-
stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.

The remainder of this article is organized as follows.
Section II introduces the model Hamiltonian and our
approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.
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Ĥs is given by
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The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :
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bound states. In the large coupling regime, the model
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Ĥs =
~!e

2

NeX

j=1

�
�̂
z
j + 1̂j

�
, (2)

where �̂z
j denotes a diagonal Pauli matrix, �̂z

j = |eijhe|�
|gijhg|. The jth emitter is coupled to the njth lattice site
of the wave guide, i.e., the emitters do not move during
the dynamics. The operator 1̂j , 1̂j = |gijhg| + |eijhe|,
shifts the energy so that the energy of the jth emitter in
the ground state |gij vanishes.

Triggered by the system-bath Hamiltonain Ĥsb with
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pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission
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pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
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coupling strength g, the emitters can change their state
from |eij to |gij and from |gij to |eij ,
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†
nj
�̂
�
j

⌘
. (3)

Here, �̂+
j and �̂

�
j denote raising and lowering operators

of the jth emitter, �̂+
j = |eijhg| and �̂

�
j = |gijhe|. The

operators â
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triguing findings motivate our quest to map out construc-
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tifying the dominant emission pathways.
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dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
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selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
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Superradiance occurs when a group of  
𝑵𝒆 emitters interact with a common 
light field. 
If  the wavelength of  the light is much 
greater than the separation of  the 
emitters, then the emitters interact with 
the light in a collective and coherent 
fashion. This causes the group to emit 
light as a high intensity pulse (with rate 
proportional to 𝑵𝒆

𝟐). 
This is a surprising result, drastically 
different from the expected exponential 
decay (with rate proportional to 𝑵𝒆) of  a 
group of  independent atoms. 

Text adapted from Wikipedia.



Superradiance Vs. Subradiance

Superradiance: Enhancement of  spontaneous emission 
by constructive interatomic interference.

Subradiance: Cooperative inhibition of  spontaneous 
emission by a destructive interatomic interference.



Coupling Emitter(s) To Cavity 
Array

tight-binding + non-linearity

2

change as the emitter separation x increases from 0 to 1.
Implications of our results for deriving a master equation
are discussed; A follow-up publication will show that our
master equation disagrees with that presented in Ref. [?
]. We identify a regime where the results can be under-
stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.

The remainder of this article is organized as follows.
Section II introduces the model Hamiltonian and our
approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.

II. THEORY CONSIDERATIONS
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and ânj respectively create and destroy a
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from 1 to N (N denotes the number of lattice sites or
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The Hamiltonian Ĥb is taken to be a one-dimensional
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In Eq. (4), the photons are assumed to interact, due to
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nâ

†
nânân. (4)

In Eq. (4), the photons are assumed to interact, due to
the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
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Parameter Space for Fixed 𝑼/𝑱 and 
Fixed ℏ(𝝎𝒄 −𝝎𝒆)/𝑱

Wang, Jaako, Kirton, 
and Rabl: PRL 124, 
213601 (2020): 
Supercorrelated
Radiance in Nonlinear 
Photonic Waveguides 
(results based on 
master equation)
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Adiabatic Hamiltonian 
assumes that states 
such as | ⟩𝒆𝒆𝒆𝒈 , | ⟩𝒆𝒆𝒈𝒆 , …
can be removed from 
Hilbert space. 
Must break down for 
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independent of U , the associated scattering states depend
on U .

In addition, the Hamiltonian Ĥb supports one two-
photon bound state | K,bi with energy EK,b for each K,

EK,b = 2~!c + sign(U)


U

2 + 16J2 cos2
✓
Ka

2

◆�1/2
. (8)

For negative U , the bound state lies below the scattering
continuum (see the thick solid and dotted lines in Fig. 2
for U/J = �4 and �1, respectively). In this case, the
binding energy for a given K is defined as the energy
di↵erence between the lower edge of the scattering con-
tinuum (EK,q with q = 0) and the bound state energy
EK,b. The situation for positive U is similar, except that
the bound state lies above the scattering continuum. The
binding energy increases with increasing |U |; correspond-
ingly, the two-photon bound state wave function becomes
more localized. The minimum (maximum) of EK,q is
larger (smaller) than the maximum (minimum) of EK,b

for U/J ⌧ �XXX (U/J � XXX); here, the minimum
and maximum are determined by allowing K to vary. We
say that the bound state is energetically ”fully separated”
from the scattering continuum for |U |/J > XXX.

The thin solid and dotted lines in Fig. 2 show the en-
ergy of the state |e, e, vaci for two di↵erent values of ~!e.
The crossings between the energy of this state and the en-
ergy of the two-photon bound state define the uncoupled
(i.e., g = 0) resonance wave vectors ±K

(0), where K
(0)

is defined to be positive. As is discussed in Sec. ?? and
Appendix ??, the resonance wave vector picture remains
valid when g is finite and su�ciently small; the coupling
does, however, modify the value of the resonance wave
vector. Since the group velocity vK,b of the two-photon
bound state,

vK,b = XXX, (9)

depends on K (vK,b is zero for Ka = 0 and ±⇡ and, in
general, finite for all other Ka), it is expected that the
correlated emitter dynamics can be controlled by chang-
ing K

(0) via the tuning of the emitter energy.
CAN YOU MAKE A FIGURE of vK,b? JUST FOR

US...

C. Solving the Schrödinger equation

Since Ĥ commutes with the excitation operator N̂exc,

N̂exc =
NX

n=1

ânâ
†
n +

NeX

j=1

�̂
+
j �̂

�
j , (10)

the number of excitations Nexc, i.e., the eigenvalue of
N̂exc, is conserved. Correspondingly, the time evolution
of an initial state with Nexc = 2 under the Hamilto-
nian Ĥ, Eq. (1), can be expanded in terms of the states
|e, e, vaci, â†n|e, g, vaci, â†n|g, e, vaci, and â

†
nâ

†
n0 |g, g, vaci,
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FIG. 2: Two-photon eigen spectrum as a function of the
scaled center-of-mass momentum Ka/⇡. The gray-shaded en-
ergy band corresponds to the scattering continuum, Eq. (7).
The thick red solid and thick blue dashed lines show the en-
ergy EK,b of the two-photon bound state for U/J = �4 and
U/J = �1, respectively. The thin solid and dashed lines show
the energy of the state |e, e, vaci for (~!e � ~!c)/J = XXX

and XXX, respectively. The circles and squares mark the
wave vectors ±K

(0).

where n and n
0 take the values 1, · · · , N . Alternatively,

the time-dependent state | i(t) can be expanded using
the zero-, one-, and two-photon eigen states of Ĥb that
are labeled by k, K, and q,

| i(t) = exp(�2ı!et)[cee(t)|g, g, vaci+X

k

c1k(t)â
†
k|e, g, vaci+

X

k

c2k(t)â
†
k|g, e, vaci+

X

K

cK,b(t)P̂
†
K,b|g, g, vaci+

X

K,q

cK,q(t)P̂
†
K,q|g, g, vaci], (11)

where | ki = â
†
k|vaci, | K,bi = P̂

†
K,b|vaci, and | K,qi =

P̂
†
K,q|vaci. The operators â

†
n and â

†
k are related via a

Fourier transformation in the standard way,

â
†
k =

1p
N

NX

n=1

exp(ıkan)â†n. (12)

Our ansatz, Eq. (11), is—with one exception—identical
to Eq. (3) of Ref. [? ]: Equation (11) accounts explic-
itly for the two-photon scattering continuum while the
equations presented in Ref. [? ] did not [1].

Inserting Eq. (11) into the time-dependent Schrödinger
equation

ı~@ (t)
@t

= Ĥ (t) (13)

and projecting onto the basis states, we obtain a set of
first-order di↵erential equations for the time-dependent
expansion coe�cients,

ı~ċee(t) =
gp
N

X

↵=1,2

X

k

exp(ıkan�(↵))c↵k(t), (14)

Time-dependent Schroedinger equation:

Ansatz (we are working in 
two-excitation sub-space):
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larger (smaller) than the maximum (minimum) of EK,b

for U/J ⌧ �XXX (U/J � XXX); here, the minimum
and maximum are determined by allowing K to vary. We
say that the bound state is energetically ”fully separated”
from the scattering continuum for |U |/J > XXX.

The thin solid and dotted lines in Fig. 2 show the en-
ergy of the state |e, e, vaci for two di↵erent values of ~!e.
The crossings between the energy of this state and the en-
ergy of the two-photon bound state define the uncoupled
(i.e., g = 0) resonance wave vectors ±K

(0), where K
(0)

is defined to be positive. As is discussed in Sec. ?? and
Appendix ??, the resonance wave vector picture remains
valid when g is finite and su�ciently small; the coupling
does, however, modify the value of the resonance wave
vector. Since the group velocity vK,b of the two-photon
bound state,

vK,b = XXX, (9)

depends on K (vK,b is zero for Ka = 0 and ±⇡ and, in
general, finite for all other Ka), it is expected that the
correlated emitter dynamics can be controlled by chang-
ing K

(0) via the tuning of the emitter energy.
CAN YOU MAKE A FIGURE of vK,b? JUST FOR

US...

C. Solving the Schrödinger equation

Since Ĥ commutes with the excitation operator N̂exc,

N̂exc =
NX

n=1

ânâ
†
n +

NeX

j=1

�̂
+
j �̂

�
j , (10)

the number of excitations Nexc, i.e., the eigenvalue of
N̂exc, is conserved. Correspondingly, the time evolution
of an initial state with Nexc = 2 under the Hamilto-
nian Ĥ, Eq. (1), can be expanded in terms of the states
|e, e, vaci, â†n|e, g, vaci, â†n|g, e, vaci, and â

†
nâ

†
n0 |g, g, vaci,
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FIG. 2: Two-photon eigen spectrum as a function of the
scaled center-of-mass momentum Ka/⇡. The gray-shaded en-
ergy band corresponds to the scattering continuum, Eq. (7).
The thick red solid and thick blue dashed lines show the en-
ergy EK,b of the two-photon bound state for U/J = �4 and
U/J = �1, respectively. The thin solid and dashed lines show
the energy of the state |e, e, vaci for (~!e � ~!c)/J = XXX

and XXX, respectively. The circles and squares mark the
wave vectors ±K

(0).

where n and n
0 take the values 1, · · · , N . Alternatively,

the time-dependent state | i(t) can be expanded using
the zero-, one-, and two-photon eigen states of Ĥb that
are labeled by k, K, and q,

| i(t) = exp(�2ı!et)[cee(t)|g, g, vaci+X

k

c1k(t)â
†
k|e, g, vaci+

X

k

c2k(t)â
†
k|g, e, vaci+

X

K

cK,b(t)P̂
†
K,b|g, g, vaci+

X

K,q

cK,q(t)P̂
†
K,q|g, g, vaci], (11)

where | ki = â
†
k|vaci, | K,bi = P̂

†
K,b|vaci, and | K,qi =

P̂
†
K,q|vaci. The operators â

†
n and â

†
k are related via a

Fourier transformation in the standard way,

â
†
k =

1p
N

NX

n=1

exp(ıkan)â†n. (12)

Our ansatz, Eq. (11), is—with one exception—identical
to Eq. (3) of Ref. [? ]: Equation (11) accounts explic-
itly for the two-photon scattering continuum while the
equations presented in Ref. [? ] did not [1].

Inserting Eq. (11) into the time-dependent Schrödinger
equation

ı~@ (t)
@t

= Ĥ (t) (13)

and projecting onto the basis states, we obtain a set of
first-order di↵erential equations for the time-dependent
expansion coe�cients,

ı~ċee(t) =
gp
N

X

↵=1,2

X

k

exp(ıkan�(↵))c↵k(t), (14)

Plugging ansatz into time-dependent 
Schroedinger equation yields 
differential equations for 
𝒄̇𝒆𝒆 𝒕 , 𝒄̇𝟏𝒌 𝒕 , 𝒄̇𝟐𝒌 𝒕 , 𝒄̇𝑲,𝒃 𝒕 , 𝒄̇𝑲,𝒒 𝒕 .



Solve Time-Dependent 
Schroedinger Equation for )𝑯

For suitable parameter combination, one finds 𝒄̇𝟏𝒌(𝒕) ≈ 𝟎 and 
𝒄̇𝟐𝒌(𝒕) ≈ 𝟎. 
If  these coefficients are set equal to zero, then 𝒄𝟏𝒌(𝒕) and 𝒄𝟐𝒌(𝒕)
can be (adiabatically) eliminated from equations.

Physical picture:

2

change as the emitter separation x increases from 0 to 1.
Implications of our results for deriving a master equation
are discussed; A follow-up publication will show that our
master equation disagrees with that presented in Ref. [?
]. We identify a regime where the results can be under-
stood in terms of e↵ective interactions between photon
bound states. In the large coupling regime, the model
Hamiltonian approaches the Rabi model, provided x � 1.

The remainder of this article is organized as follows.
Section II introduces the model Hamiltonian and our
approaches to solving the time-dependent and time-
independent Schrödinger equation. Section III discusses
our results for weak to medium coupling strengths. Last,
Sec. IV provides a summary and outlook. Technical de-
tails are relegated to two appendices.

II. THEORY CONSIDERATIONS

A. Model Hamiltonian

The total Hamiltonian Ĥ is given by

Ĥ = Ĥs + Ĥb + Ĥsb, (1)

where Ĥs denotes the system Hamiltonian, Ĥb the bath
Hamiltonian, and Ĥsb the system-bath coupling. We con-
sider a system consisting of Ne = 2 two-level emitters
with energy separation ~!e between the excited state |eij
and the ground state |gij of the jth emitter. Specifically,

Ĥs is given by

Ĥs =
~!e

2

NeX

j=1

�
�̂
z
j + 1̂j

�
, (2)

where �̂z
j denotes a diagonal Pauli matrix, �̂z

j = |eijhe|�
|gijhg|. The jth emitter is coupled to the njth lattice site
of the wave guide, i.e., the emitters do not move during
the dynamics. The operator 1̂j , 1̂j = |gijhg| + |eijhe|,
shifts the energy so that the energy of the jth emitter in
the ground state |gij vanishes.

Triggered by the system-bath Hamiltonain Ĥsb with
coupling strength g, the emitters can change their state
from |eij to |gij and from |gij to |eij ,

Ĥsb = g

NeX

j=1

⇣
ânj �̂

+
j + â

†
nj
�̂
�
j

⌘
. (3)

Here, �̂+
j and �̂

�
j denote raising and lowering operators

of the jth emitter, �̂+
j = |eijhg| and �̂

�
j = |gijhe|. The

operators â
†
nj

and ânj respectively create and destroy a
photon at lattice site nj , where the label nj takes values
from 1 to N (N denotes the number of lattice sites or
cavities of the wave guide).

The Hamiltonian Ĥb is taken to be a one-dimensional
array of tunnel coupled cavities in the tight-binding limit.

It is characterized by the ”free-photon energy” ~!c, the
tunneling energy J , and the onsite interaction energy U :

Ĥb = ~!c

NX

n=1

â
†
nân � J

NX

n=1

⇣
â
†
nân+1 + â

†
n+1ân

⌘

+
U

2

NX

n=1

â
†
nâ

†
nânân. (4)

In Eq. (4), the photons are assumed to interact, due to
the presence of a Kerr-like medium, either e↵ectively re-
pulsively (U > 0) or e↵ectively attractively (U < 0). A
positive U gives rise to a two-photon bound state that
lies above the two-photon continuum while a negative U

gives rise to a two-photon bound state that lies below the
two-photon scattering continuum. The bath Hamilto-
nian considered here has been chosen for several reasons:
(i) The eigen energies and eigen states of Ĥb are known
analytically (see below). (ii) Despite its simplicity, the
Hamiltonian Ĥb supports a non-trivial mode structure,
namely the above-mentioned two-photon bound state.
(iii) It was predicted in Ref. [? ] that the emission
dynamics of Ĥ displays, for certain parameter combi-
nations, sub-radiance and super-correlations. These in-
triguing findings motivate our quest to map out construc-
tive and destructive interferences, with the goal of iden-
tifying the dominant emission pathways.
As already stated, we are interested in the emission

dynamics of two emitters—initially (at time t = 0) pre-
pared in state |ei1|ei2—in the regime where the dynamics
is driven, at least in part, by the non-trivial mode struc-
ture of the bath, i.e., by the existence of the discrete
bound state supported by Ĥb. The next section discusses
selected properties of Ĥb. The Hamiltonian Ĥ has five
energy scales: ~!e, g, ~!c, J , and U . The free photon en-
ergy ~!c sets the overall energy scale and does not influ-
ence the physical properties. Throughout, J and ~/J are
used as energy and time units. To reduce the parameter
space, we focus on two U/J values (namely, U/J = �4
and U/J = �1) and analyze the system properties as
functions of g/J , the emitter separation x, and ~!e/J .
Throughout this paper, the emitter energy ~!e is set such
that the two emitters, for vanishing g, are in resonance
with a two-photon bound state supported by the tunnel
coupled cavities. A change of ~!e changes the center-of-
mass momentum of the resonant two-photon bound state
and correspondingly the intrinsic velocity of the bound
state that the emitters are in resonance with. This sug-
gests that the tuning of ~!e, despite of being restricted to
be within the two-photon bound state band, may impact
the dynamics appreciably.
Figure 1(a) provides a schematic overview of the sys-

tem under study as functions of x and g/J for constant
and finite U/J and ~!e. The figure serves as an intro-
duction to, guide for, and summary of our study. While
the schematic is informed by the calculations and anal-
ysis presented in the following sections, several aspects
of Fig. 1 can be understood intuitively. For g ! 1,



Effective Coupling:
| ⟩𝒆𝒆, 𝒗𝒂𝒄 and | ⟩𝒈𝒈,𝑲 “deep”

“shallow”

𝒇𝑲(𝒏𝟏, 𝒏𝟐)



Example Of  Dynamics: 
Initial State | ⟩𝒆𝒆
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Summary and Outlook

Discrete lattice systems support universal states.

Coupling of  emitters to cavity array provides unique 
opportunity to study impact of  non-trivial mode structure.

Interesting radiation dynamics.

Opportunity to study dissipative dynamics in different 
regimes.

Alternative framework: Master equation.
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