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Lecture 3

Efimov effect:
Three identical bosons with short-range interactions
(beautifully introduced in Pascal Naidon’s lectures)

unequal- ﬂ && three equal-

mass three- larger equal- nuclear systems mass bosons
boson and mass bosonic with finite range with 1D spin-
three-fermion systems with (beautiful lectures orbit coupling
systems short-range by Alejandro (this lecture)

interactions Kievsky)

Discussion of one few-body technique:
Stochastic variational approach with explicitly correlated
Gaussians.



Overview Of Lecture 3

Efimov scenario of three equal-mass bosons with
1D spin-orbit coupling

Review of Efimov effect for equal-mass bosons with short-range
interactions.

What is 1D spin-orbit coupling (system lives in three-dimensional space)
and how does it differ from “conventual” situation?

 One-body problem.

* Intermezzo: Numerical approach.

 Two-body problem.

 Three-body problem.

Unlike lectures 1 and 2:

« Consider stationary system (no time dependence).

« No experimental data yet on generalized radial scaling law, even
though spin-orbit coupling has been realized in cold atom systems.
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_ ,, h?length __,, h®length* , . _ h?
92 = #———— ;93 = #—— (since energy—mlengthz).




Braaten, Hammer,
Physics Reports

Peculiar Three-Boson +zs.2s e
Efimov States

P12 P123
_|_

H = 2112 | 2123 T Zj<k925(7‘jk) +936(ry —12)6(F2 —73).
_ 4mh%ag _ #h%pt _ hPK?
g2 = - and g3 — — where E it =

Time-dependent SE for H possesses continuous scaling
symmetry:
t > A%, 7 > A¥; a; - dag E > A7%E; k., —» A7 k..

Time-dependent SE for H also possesses discrete scaling
symmetry (1o = 22.7):
t > ASt; 7 — AoT; ag — Agag; E > A3%E; k., — k..



Let s-Wave Scattering
Length Be Infinitely Large

Hyperradial and hyperangular motion separate exactly:
Y = F(Rhyper)¢(ﬂ); R%lyper X 7‘%2 + T%S T T%3 .

L" = 0t hyperangular equation yields eigenvalue sy, E
3
where sy = 1.006...

Hyperangular eigenvalue enters into Schroedinger-like
hyperradial equation: H,,4ia1F(Ruyper) = EsF(Ruyper)s

B2 9z h2((se)? -
- 2maRZ,,..  2mRL..

where Hradial(Rhyper) —

If F(Rpyper) is a solution with energy E{”, then F(AgRpyper )

with 1, = exp (SE) = 22.7 ... is a solution with energy }LazEg").
0

Infinite

# of
bound
states




Finite s-Wave Scattering Length:
Universally Linked States

V(r)
A

Numerical test for
two-body plus
three-body
Gaussian potential:
Perfect “collapse”
of neighboring
energy levels (see
lectures by Naidon
and Kievsky).

stronger attraction

0 0,0)

> V(r)
A

0.1

-0.1 0

Sign(as)lro/ aSI 12

Spectrum is
determined

by a; and three-
body parameter k.,
(radial scaling
law).




Borromean rings:

The blue ring lies under
the green ring (the
“blue-green dimer” is
unbound). If the red
ring is cut open, the
trimer flies apart.




Measurement Of Loss Rate For
Non-Degenerate 33Cs Gas

15 | T T T | T | T T T | T T 4.0 T T T T ; ''''''''
as = —936a0 . as = —:20’ 19Oa0 = setA |-
. 35} '

.. N N N
04 06 08 10 12 14 16 0 02 04 06 08 10 12

TR -1000a/a, 10812
o Huang et al., PRL 112, 190401 (2014).

Enhanced losses when Ratio of A, = 21. 6 (compared

trimer is degenerate to 22.7)! Confirmation of
with three free atoms. discrete scaling symmetry.

1/a
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Efimov Scenario In The Presence
Of Spin-Orbit Coupling?

If the single-particle dispersion is modified and the s-wave

scattering length is large, what happens to the discrete scaling
symmetry/Efimov physics?

Fermions with 3D SOC:
Shietal.,, PRL112, 013201 (2014); PRA 91, 023618 (2015).

Two-parameter radial scaling Generalized multiple-parameter
law does not hold. radial scaling law holds. Discrete

scaling symmetry survives.
BBB with 1D SOC: V

Guan, Blume: PRX 8, 021057 (2018).

Conjecture: Should hold for any type of SOC.



Looking Ahead...

—2
P12 P123 z 5 R R R
H = o + g;6(ry —1,)6(1y, —73)
(2M12 21112 5 g» ( k) ds 1 2 2 3))
hkso
+ (.)+Q(.) +8C.).

Continuous scaling symmetry (easy to check)!
t > A27 > AF; a, > Aag kg » A kg, Q > 1720
6> A1 %5 E—> A2%E; k, > 17 1k,

Discrete scaling symmetry?
t - A5t; T > AgT; as — Aoa; ko = Aglkg,; Q — 215%Q;
8 > Ag%6; E —» 1°E; k¢, — K, Ag =~ 22.7
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Start With Single-Particle
Dispersion

Conventionally, kinetic energy: tE(p2)
1 1
H = -p* = - (p% +p; + 7). ,
>Z

Say, the particle has two spin states: E(p,)

Now let the spin states have different momenta:

E(p;)
1) i 1)

For this to be interesting,

must couple states. Pz
—hkg, hkg,




Single-Particle Dispersion

For 1D spin-orbit coupling (equal mixture of Rashba and Dresselhaus

. . . p,zc+p§, p7 nkso
coupling): H = (——+_—)I; + —p,0, + 20, 1E(p,)

opening

2 2 2 2

_ PxtpPy | pz hksoPz~p , £2° of ga

B = 2m+2mi\[("‘)+4 w'
P:

Add detuning é:

2,2 2
Px+tPy Pz hkso
H = |
( 2m T Zm) 2 T

m

E(p,)

p,o, + 60,.

2+ 2 2
Ei _ Px py_|_ Pz + \/(hksopz_l_izs)z

2m 2Zm m

P



Modified Single-Particle
Dispersion — New Physics

Dirac-like term in Hamiltonian. lexc)
k3, wy -
kli w1

kg, | 1) 1)

so —
; Two hyperfine
: | tso = Nt/Eso | states coupled by

_4_2 1 _11 1 (l) 1 11 1 > 5 1 _11 1 (l) 1 l1 1 5 |vso — hkso/ml |aSGrS.

2m

tae, .
--------

1
| 5, = (TeH®)

Typical parameters:
(kso)™1 =~ 1,810A;

E—;l" ~ 2x1.775 kHz;

Q,6 € [0,10E,,].




Modified Single-Particle
Dispersion — New Physics

For 1D spin-orbit coupling (equal mixture of Rashba and Dresselhaus
(p§+p§ b2

coupling): H = 0, + 20, + b0, 7E(pz)

_ Pitpy | P hksopz | 8\p , 27
Pz

Why is this of interest? Expand E_ for large 2 and § # 0 around p, ,,;,.:

3 2
E_ = const + (pz pz’mi") + .-
2m

Like a charged particle in a uniform vector potential 4*: eA* = D7 min €2

Possibility to simulate physics of charged particles (e.g., fractional
quantum Hall effect) with neutral atoms!



Two Bosons With One-
Dimensional Spin-Orbit Coupling

3D system with 1D SOC (spin-orbit coupling + Raman coupling +
detuning) - Two-body bound state or not?

Rewrite Hamiltonian in relative coordinates (¥ and p with reduced
mass u) and center-of-mass coordinates (R and P with total mass M):

H=H,,+H_., coupling

H,.,(P,) W \

2 2

+p5 +

:Px Py Pz 1(1)®I(2) + sopz( (1)®I(z) 1(1)®0(2))
2u u

hksoP,
+n(a§})®1§2)+1§1)®a§f))+(6+ 59 )( (1)®I(z>+1(1>®0<2))

+Vay (D1 B M _

|Hyo;, P,] =0 ‘ parametric dependence on CoM momentum (call §)




Demands On Numerical
Method

* Must be...
« ...able to treat multiple channels.
- ...able to describe small and large length scales.

- ...able to describe eigen energies and eigen states that
vary by orders of magnitude.

« ...applicable to two and three particles.

Our method of choice:

Stochastic variational approach with explicitly
correlated Gaussian basis function (see also
contributed talk yesterday by Roy Yaron).



Basis Set Expansion:
Variational Approach

Let <D]- withj = 0,1, --- be an orthonormal complete set. I

Any eigen state ¢; with energy E; of H can be expanded as
o (1

In reality: ¢, = 12, ¢\ ®; (N}, < o0; b, is an approximation to ¢;).
1= Lj=0€; b 1

Form matrix C with matrix elements Cj1 = c](l)

Eigenvalues £; of matrix equation H C = 2 C have the following property:

Eg < &9, E1 < &4, (variational upper bounds).



Basis Set Expansion:
Variational Approach

Question: What changes if (Dj withj = 0,1, --- are not orthogonal?



Basis Set Expansion:
Variational Approach

Now: Allow @; with j = 0,1, --- to be linearly dependent (but not too

much). ‘<

Expand ¢; = Z;.V:”O c](.l)tbj (Np < o0; ¢p; is an approximation to exact eigen

state ¢,).

Form matrix C with matrix elements Cj1 = c](.l).

The eigenvalues &; of generalized eigen value equation HC=%0 Z'),
where Oj; = (CI>]-|<I>1), have the following property:

Eg < €9, Eq1 < &4, (variational upper bounds).



Basis Set Expansion:
Variational Approach

Take advantage of the fact that the basis functions &; can be
“anything”.

Pick @; such that integrals have compact analytical expressions.
Pick @; such that the different length scales of the system are covered.

Take advantage of the fact that low-energy Hamiltonian can be
constructed using different functional forms for interaction potential:

purely repulsive Gaussian
= Z T+ Vsocj + z Vabji + 2 Vabjki (see also talks by Kievsky)
j<k j<k<l

Require ry, < other scales: jik

174 — __Jr
Need to resolve multiple scales. 2bjk voexp< Zr(z,)
Use &; with “different widths.”



Basis Set Expansion:
Stochastic Variational Approach

Method first introduced to cold atom community for bosons by Sorensen, Fedorov and
Jensen, AIP Conf. Proc. No. 777, p. 12 (2005). See also work on fermions by von Stecher
and Greene, PRL 99, 090402 (2007). For details see: Suzuki and Varga (Springer, 1998); von
Stecher, Greene, Blume, PRA 77, 043619 (2008). A

Idea:

Use basis functions that involve Gaussians with ,

different widths in interparticle distances =D r

(correlations). I'o

Large number of non-linear parameters that are ﬁ

being optimized semi-stochastically. 1 O
@

Simplest case: Basis functions with L = 0 and IT = +1. 32%.

2
_ N _Tst | _ _lorp =

D; = exp (— S<t2d]z,st) = exp( 5 X A x)

x: Denotes Jacobi vectors p;, p,, . ‘

A (N —1)X(N — 1) matrix with N(N — 1)/2 independent parameters.



Stochastic Variational Approach:
Outline of Algorithm

* Pick basis function &, and calculate &;.

Goal: Add @,. Procedure:
* Pick @, 4,...,@,, (p~1 —10000).

 Calculate ¢, 1,...,&; . &3 j is eigen value of target state if basis function
@, ; is added to basis (j = 1, -, p).

* Determine @, = @, ; such that ¢; = &, ; = min(&; 1,...,&2,).
- Diagonalize Hamiltonian matrix to obtain eigenvalues and eigenvectors.

To add @3, proceed as above.

Once basis set is “complete”, calculate structural properties.

Can optimize ground or excited state.

Can optimize multiple states simultaneously.



o= 0.01 dho
a. = 0.0096a,,,

E/ FJh()

Harmonically Trapped Five-
Boson System: Convergence

6.16

6.14

6.12

6.1

6.08

6.0775

— 1 T 1 T T T T 1

| Used energy to benchmark effective

field theory Hamiltonian:

- Johnson, Blume, Yin, Flynn,
Tiesinga, NJP (2012).

]
0 0.02 0.04 0.06 0.08 0.1
1

/ (number of basis functions)

number of basis functions

For each N,, try
R a few 1000 and

8 9 10 keep the best.



Trapped (3,3) System: Energy
And Pair Dlstrlbutlon Functuon

Lowest energy at unitarity
(1/as=0):
71—

E/E,

6.9

extrapolate to obtain
zero-range energy

6.8 1 ] 1 ] 1 | 1 ]
B 0.02 0.04 0.06 0.08

rO / aho

Two-peak structure of up-
down pair distribution function:
Small r,; peak: pair formation.
Large r,,; peak: unpaired.




A Few More Comments

Basis functions need to be symmetrized: Five identical bosons
implies 5!=120 permutations.

Use physical insight to choose d; ,; efficiently:
E.g., “2+1” or “1+1+1” configuration.

If parameter windows for non-linear variational parameters are not

set properly, a non-converged energy may appear converged...

Basis sets tend to be small (a few 1000); but we work hard to select
the basis functions we want.

Beyond L = 0% states? Many possibilities... Global vector
approach is quite convenient.



Spin-Orbit Coupling:
Need To Account For Spin

N 2 N-1
r
D =exp| - E St + E LS ; ;e ﬁt Correlation between spin and
2 - spatial degrees of freedom.

s<t Jst

Can be rewritten as

Spatial two-body N iSj Ty
correlations

Viel = Z] 1 ]¢] and lI)] — S(CD](pl, : -:ﬁN—l)Xj)
Matrix elements have compact analytical expressions.

Bound state:
Energy of dimer with CM momentum P, is more negative than that of two free

atoms with the same P,,.
Energy of trimer with CM momentum P, is more negative than that of three
free atoms with the same P, and that of a dimer and an atom with the same P,.
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Non-Interacting Relative
Dispersion Curves Along z

-» increase
I o 5 — 6 + hkSOPZ.
S M
=
= ]
= .
) 1 fixed
| Raman
coupling

p./(hks,)
—> increase ().

: Transition from
4 double- to single-

p,/(hkg,) p,/(hk,) minimum regime.




Two ldentical Bosons:

~

A =2E5;6 20 (an =ay =ayp =ay)

" » increase

Q || AI ol || 0 I “4 || . hk P
A - " oo o° 7 (a)' — S0~ z
S % A 6=0+ T
x

~

D

S

E 1 NI two-

_ .

= i | particle

N—r ° .

| _4 1 1 1 1 1 1 1 _4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 d'spers‘on

2 2 -1 0 1 10 1 2
p./(hkg,)

Q 0 0 | — 1 .

3 g\ BB N.egai\tlve of
IS L | binding

2 | energy,

z Ll 5L | deviations
< ) 2

£3 ~ f -

— — { from

2 2 10 1 2

1/(ak_ )

1/(ak_ )

/(ak_ )



2.5

Three BB, @) (b)/ BB (1st
one FF 20 ke
bound o 1.5l e
Y
states S 1ol
(‘Q — ZESO) 0.5l
Scattering 0.4 ' ' ' 081 12 13 14

threshold: 06 -03 0 03 06
N — 1/(askso) 1/(askso)

6

(c) BB (2nd exc

w O

d) FF (gr.)

0/Es,

F
-
-

o =

s e

N/Es, "o 1.0} 'S 1.0}
Where does |
the “shape”
come from? 0.0

14 15 16 17 0837057 05 06 07 08
1/(askso) 1/(askso)



“Shape”?

Simple Qualitative Picture

O = 2E, (humerical)
1)

0.5}

0'—00.6 -03 0

1/(askso)

0'8.9 1. 11

0.3 12 13 14

1/(askso)

2.5

(©)
2.0

81'5
~
S

1.0

0.5

93

1.4

1.5
1/(askso)

16 1.7

083 04 05 06 07 08
1/(askso)

) = 0 (analytical)

25 25
(a) ()
2.0 2.0
1.5 2 1.5
uf —0.25 o W
*S 1.0 0 S 1.0
0.5 0.5\
0.0 . \S\
06 —03 0 03 06 289 1 11 12 13 14
1/(askso) 1/(askso)
25 25
© £ﬁ4r/’///<:j;/’
2.0 2.0
15 15 -0.75
uy
l\ _()-5
© 40 1.0
-0.25
0.5 0.5
3 14 15 16 17 %83 04 o5 06 07 08

1/(askso)

1/(askso)



Binding Energy For Q = 2E .
Lowest BB State

2.5'. . . /‘. . . —..15-
X e //// Maximum binding roughly where
20pe : ' the dispersion has three global
+“—minima
o 1.5} 1
e
(o momentum space real space
\ 10 lllllll 05 T T T T T T T
Q 1.0} 3| 04F
> 6f < 03}
0.5} x | nF o4l ~T 02t
\\ o[ o1k
0 0. . 0 i = ‘l w l‘~ S 0 [ {: 1 m
L : ' - - - - 2 -1 0 1 2 10 50 5 10
-06 -05 -04 -03 -02 -01 0.0
1/(askso) P/ (hks,) zk,

Weakly-bound state for

certain negative free-space
tteri | th For FF, see: Shenoy, PRA 88, 033609 (2013).
S-wave scattering iengtins. Dong et al., PRA 87, 043616 (2013).



With SOC: Fate Of Three-
Boson Efimov States?

—2
P12 P123 z 5 R R R
H = o + g;6(ry —1,)6(1y, —73)
(2”12 21112 5 g» ( k) ds 1 2 2 3))
hkso
+ (.)+Q(.) +8C.).

Continuous scaling symmetry (easy to check)!
t > A27 > AF; a, > Aag kg » A kg, Q > 1720
6> A1 %5 E—> A2%E; k, > 17 1k,

Discrete scaling symmetry?
t - A5t; T > AgT; as — Aoa; ko = Aglkg,; Q — 215%Q;
8 > Ag%6; E —» 1°E; k¢, — K, Ag =~ 22.7
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Generalized Radial Scaling Law?
8 =0And (k,)" ! = 661,

0 ) 0
a dimer ]
m” N
= -0.1 ~ "1
3 = X1 §—-‘\
o i
=

-0.04 0 0.08

' . 12
ene gy X)% Slgn(aS)IrO/aSI
% S (ko)1 = /1025r0.
N _ = (0. 0016//1 )
-—=_ . |
~
N
N
[l 1 3 \
)

-0.2 -0.1 0 0.1 0.

Sign(as)(ro/as)y2



Generalized Radial Scaling Law
(Five Instead Of Two Axes)

Discrete = O (35'591"236(69,,'; st)
scaling w” FY (kso)™1 = 257.
symmetry . 2 =2Es; 6=0.
(Ap = 22.7)! = Dots (exc. st. of H
. L g pCollapse o with scaled
as — Aopag; & neighboring energy levels! arameters)
kSO - Aalkso; p .
9 4 29; - Solid lines (gr. st.
5 — 15%8; —, manifold):
E - 2;°E. = (1) = 667,
K, - K,. %L]-S (Kso) ™™ = 1001‘0.
. Q=2E,.5=0.
‘;I'] Dots (exc. st.

manifold of H with

02 -0.1 0 0.1 0.2 scaled

5 arameters).
Sign(as)(ro/as)ll“ P )




Proposal:
Experimental Observability

Using three-body
parameter for 133Cs.
Lowest state in excited
state manifold.

(kso) 1 = 10,160a,.

’;ﬂ ~ 1.32 (exc. state).

0 =2E,,.

Ground state resonance
mostly unchanged.

Read as C-0-M momentum

Excited state resonance:
Enhanced losses between | |
a;, ~ —7,790a, and

0 100mn 2 -09 -06 -0.3 0 0.3

Scattering length window! (ap/as)x1 0*




Summary

Discussion of one few-body technique:
Stochastic variational approach with explicitly correlated
Gaussians.

Application of this approach to bosons in the presence of 1D
spin-orbit coupling.

Generalized radial scaling law for three identical bosons.
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Thank You!



