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Lecture 3

Discussion of  one few-body technique: 
Stochastic variational approach with explicitly correlated 
Gaussians.

Efimov effect:
Three identical bosons with short-range interactions
(beautifully introduced in Pascal Naidon’s lectures)

unequal-
mass three-
boson and 

three-fermion 
systems

larger equal-
mass bosonic 
systems with 
short-range 
interactions

nuclear systems 
with finite range 

(beautiful lectures 
by Alejandro 

Kievsky)

three equal-
mass bosons 
with 1D spin-
orbit coupling 
(this lecture)



Overview Of Lecture 3

Review of  Efimov effect for equal-mass bosons with short-range 
interactions.
What is 1D spin-orbit coupling (system lives in three-dimensional space) 
and how does it differ from “conventual” situation? 
• One-body problem.
• Intermezzo: Numerical approach.
• Two-body problem.
• Three-body problem.

Unlike lectures 1 and 2: 
• Consider stationary system (no time dependence).
• No experimental data yet on generalized radial scaling law, even 

though spin-orbit coupling has been realized in cold atom systems.

Efimov scenario of  three equal-mass bosons with 
1D spin-orbit coupling



Review:
Three-Boson Hamiltonian

𝑯 = 𝒑𝟏𝟐
𝟐

𝟐𝝁𝟏𝟐
+ 𝒑𝟏𝟐,𝟑

𝟐

𝟐𝝁𝟏𝟐,𝟑
+∑𝒋%𝒌𝒈𝟐𝜹 𝒓𝒋𝒌 +𝒈𝟑𝜹 𝒓𝟏 − 𝒓𝟐 𝜹 𝒓𝟐 − 𝒓𝟑 .

Question: What units do 𝒈𝟐 and 𝒈𝟑 have?

Braaten, Hammer,
Physics Reports 
428, 259 (2006).
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Review:
Three-Boson Hamiltonian

𝑯 = 𝒑𝟏𝟐
𝟐

𝟐𝝁𝟏𝟐
+ 𝒑𝟏𝟐,𝟑

𝟐

𝟐𝝁𝟏𝟐,𝟑
+∑𝒋%𝒌𝒈𝟐𝜹 𝒓𝒋𝒌 +𝒈𝟑𝜹 𝒓𝟏 − 𝒓𝟐 𝜹 𝒓𝟐 − 𝒓𝟑 .

Question: What units do 𝒈𝟐 and 𝒈𝟑 have?

𝒈𝟐: energy times length3.
𝒈𝟑: energy times length6.

Follow-up question: Given this answer, what are the most 
general expressions for 𝒈𝟐 and 𝒈𝟑?

𝒈𝟐 = # ℏ
𝟐 𝐥𝐞𝐧𝐠𝐭𝐡
𝒎

; 𝒈𝟑 = # ℏ𝟐𝐥𝐞𝐧𝐠𝐭𝐡𝟒

𝒎
(since 𝐞𝐧𝐞𝐫𝐠𝐲 = ℏ𝟐

𝒎𝐥𝐞𝐧𝐠𝐭𝐡𝟐
).

Braaten, Hammer,
Physics Reports 
428, 259 (2006).



Peculiar Three-Boson 
Efimov States

𝑯 = 𝒑𝟏𝟐
𝟐

𝟐𝝁𝟏𝟐
+ 𝒑𝟏𝟐,𝟑

𝟐

𝟐𝝁𝟏𝟐,𝟑
+∑𝒋%𝒌𝒈𝟐𝜹 𝒓𝒋𝒌 +𝒈𝟑𝜹 𝒓𝟏 − 𝒓𝟐 𝜹 𝒓𝟐 − 𝒓𝟑 .

𝒈𝟐 =
𝟒𝝅ℏ𝟐𝒂𝒔
𝒎 and 𝒈𝟑 =

# ℏ𝟐𝜿∗(𝟒

𝒎 , where 𝑬𝒖𝒏𝒊𝒕 =
ℏ𝟐𝜿∗𝟐

𝒎
.

Time-dependent SE for 𝑯 possesses continuous scaling 
symmetry: 
𝒕 → 𝝀𝟐𝒕; 𝒓 → 𝝀𝒓; 𝒂𝒔 → 𝝀𝒂𝒔; 𝑬 → 𝝀;𝟐𝑬; 𝜿∗ → 𝝀;𝟏𝜿∗.

Time-dependent SE for 𝑯 also possesses discrete scaling 
symmetry (𝝀𝟎 ≈ 𝟐𝟐. 𝟕): 
𝒕 → 𝝀𝟎𝟐𝒕; 𝒓 → 𝝀𝟎𝒓; 𝒂𝒔 → 𝝀𝟎𝒂𝒔; 𝑬 → 𝝀𝟎;𝟐𝑬; 𝜿∗ → 𝜿∗. 

Braaten, Hammer,
Physics Reports 
428, 259 (2006).



Let s-Wave Scattering 
Length Be Infinitely Large

Hyperradial and hyperangular motion separate exactly: 
𝜳 = 𝑭 𝑹𝒉𝒚𝒑𝒆𝒓 𝜱 𝛀 ; 𝑹𝒉𝒚𝒑𝒆𝒓

𝟐 ∝ 𝒓𝟏𝟐𝟐 + 𝒓𝟏𝟑𝟐 + 𝒓𝟐𝟑𝟐 .

𝑳𝜫 = 𝟎* hyperangular equation yields eigenvalue 𝜾𝒔𝟎, 
where 𝒔𝟎 = 𝟏. 𝟎𝟎𝟔...

Hyperangular eigenvalue enters into Schroedinger-like 
hyperradial equation: 𝑯𝒓𝒂𝒅𝒊𝒂𝒍𝑭 𝑹𝒉𝒚𝒑𝒆𝒓 = 𝑬𝟑𝑭(𝑹𝒉𝒚𝒑𝒆𝒓), 

where 𝑯𝒓𝒂𝒅𝒊𝒂𝒍 𝑹𝒉𝒚𝒑𝒆𝒓 = − ℏ𝟐

𝟐𝒎
𝝏𝟐

𝝏𝑹𝒉𝒚𝒑𝒆𝒓
𝟐 +

ℏ𝟐((𝜾𝒔𝟎)𝟐 8
𝟏
𝟒)

𝟐𝒎𝑹𝒉𝒚𝒑𝒆𝒓
𝟐 .

If 𝑭 𝑹𝒉𝒚𝒑𝒆𝒓 is a solution with energy 𝑬𝟑
(𝒏), then 𝑭 𝝀𝟎𝑹𝒉𝒚𝒑𝒆𝒓

with 𝝀𝟎 = 𝐞𝐱𝐩 𝝅
𝒔𝟎

= 𝟐𝟐. 𝟕… is a solution with energy 𝝀𝟎8𝟐𝑬𝟑
(𝒏). 

…
…

Infinite 
# of  

bound 
states

𝑬𝟑

𝒏 − 𝟏

𝒏 + 𝟏

𝒏
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Finite s-Wave Scattering Length: 
Universally Linked States

stronger attraction
V(r)

r

V(r)

r

Spectrum is 
determined
by 𝒂𝒔 and  three-
body parameter 𝜿∗
(radial scaling 
law).

Numerical test for 
two-body plus 
three-body 
Gaussian potential: 
Perfect “collapse” 
of  neighboring 
energy levels (see 
lectures by Naidon
and Kievsky).

−
|𝐸
|

𝑬𝟑

𝑬𝟑 𝑬𝟐



O
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Borromean rings:
The blue ring lies under
the green ring (the 
“blue-green dimer” is 
unbound). If  the red 
ring is cut open, the 
trimer flies apart.
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Measurement Of  Loss Rate For 
Non-Degenerate 133Cs Gas

g-wave

g-wave

Enhanced losses when 
trimer is degenerate 
with three free atoms.

𝒂𝒔 = −𝟗𝟑𝟔𝒂𝟎 𝒂𝒔 = −𝟐𝟎, 𝟏𝟗𝟎𝒂𝟎

Ratio of 𝝀𝟎 = 𝟐𝟏. 𝟔 (compared 
to 22.7)! Confirmation of 
discrete scaling symmetry.

−
|𝐸
|

Huang et al., PRL 112, 190401 (2014).
ss



Efimov Scenario In The Presence 
Of  Spin-Orbit Coupling?

If  the single-particle dispersion is modified and the s-wave 
scattering length is large, what happens to the discrete scaling 
symmetry/Efimov physics?

Fermions with 3D SOC: 
Shi et al., PRL 112, 013201 (2014); PRA 91, 023618 (2015).

Two-parameter radial scaling 
law does not hold.

Generalized multiple-parameter 
radial scaling law holds. Discrete 

scaling symmetry survives.

BBB with 1D SOC: 
Guan, Blume: PRX 8, 021057 (2018). 

Conjecture: Should hold for any type of  SOC. 



Looking Ahead…

𝑯 = (
𝒑𝟏𝟐𝟐

𝟐𝝁𝟏𝟐
+
𝒑𝟏𝟐,𝟑𝟐

𝟐𝝁𝟏𝟐,𝟑
+)

𝒋&𝒌

𝒈𝟐𝜹 𝒓𝒋𝒌 + 𝒈𝟑𝜹 𝒓𝟏 − 𝒓𝟐 𝜹 𝒓𝟐 − 𝒓𝟑 ) 𝑰𝟖

+
ℏ𝒌𝒔𝒐
𝒎

… + 𝛀 … + 5𝜹 … .

Continuous scaling symmetry (easy to check)! 
𝒕 → 𝝀𝟐𝒕; 𝒓 → 𝝀𝒓; 𝒂𝒔 → 𝝀𝒂𝒔; 𝒌𝒔𝒐 → 𝝀;𝟏𝒌𝒔𝒐; 𝛀 → 𝝀;𝟐𝛀; 
<𝜹 → 𝝀;𝟐<𝜹; 𝑬 → 𝝀;𝟐𝑬; 𝜿∗ → 𝝀;𝟏𝜿∗

Discrete scaling symmetry? 
𝒕 → 𝝀𝟎𝟐𝒕; 𝒓 → 𝝀𝟎𝒓; 𝒂𝒔 → 𝝀𝟎𝒂𝒔; 𝒌𝒔𝒐 → 𝝀𝟎;𝟏𝒌𝒔𝒐; 𝛀 → 𝝀𝟎;𝟐𝛀; 
<𝜹 → 𝝀𝟎;𝟐<𝜹; 𝑬 → 𝝀𝟎;𝟐𝑬; 𝜿∗ → 𝜿∗; 𝝀𝟎 ≈ 𝟐𝟐. 𝟕

changes and extra
terms due to SOC



Start With Single-Particle 
Dispersion

Conventionally, kinetic energy:
𝑯 = 𝟏

𝟐𝒎
𝒑𝟐 = 𝟏

𝟐𝒎
𝒑𝒙𝟐 + 𝒑𝒚𝟐 + 𝒑𝒛𝟐 .

Say, the particle has two spin states:

Now let the spin states have different momenta:

For this to be interesting, 
must couple states.

𝒑𝒛

𝑬(𝒑𝒛)

𝒑𝒛

𝑬(𝒑𝒛)

𝒑𝒛

𝑬(𝒑𝒛)
| ⟩↑ | ⟩↓

ℏ𝒌𝒔𝒐−ℏ𝒌𝒔𝒐



Single-Particle Dispersion

For 1D spin-orbit coupling (equal mixture of  Rashba and Dresselhaus

coupling): 𝑯 = (
𝒑𝒙𝟐*𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
)𝑰𝟐 +

ℏ𝒌𝒔𝒐
𝒎
𝒑𝒛𝝈𝒛 + 𝜴𝝈𝒙

𝑬± =
𝒑𝒙𝟐.𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
± (ℏ𝒌𝒔𝒐𝒑𝒛

𝒎
)𝟐+ 𝜴𝟐

𝟒

Add detuning 𝜹:

𝑯 = (𝒑𝒙
𝟐.𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
)𝑰𝟐 +

ℏ𝒌𝒔𝒐
𝒎
𝒑𝒛𝝈𝒛 + 𝜹𝝈𝒛.

𝑬± =
𝒑𝒙𝟐.𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
± (ℏ𝒌𝒔𝒐𝒑𝒛

𝒎
+ 𝜹

𝟐
)𝟐

𝒑𝒛

𝑬(𝒑𝒛)

𝒑𝒛

𝑬(𝒑𝒛)

opening 
of  gap
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Modified Single-Particle 
Dispersion → New Physics

Dirac-like term in Hamiltonian.

| ⟩↓| ⟩↑

| ⟩𝒆𝒙𝒄

𝑬𝒔𝒐 =
ℏ𝟐𝒌𝒔𝒐𝟐

𝟐𝒎

𝒕𝒔𝒐 = ℏ/𝑬𝒔𝒐

Typical parameters: 
(𝒌𝒔𝒐)/𝟏 ≈ 𝟏, 𝟖𝟏𝟎Å;
𝑬𝒔𝒐
ℏ
≈ 𝟐𝝅×𝟏. 𝟕𝟕𝟓 𝐤𝐇𝐳; 

𝛀, 𝜹 ∈ [𝟎, 𝟏𝟎𝑬𝒔𝒐].

𝒗𝒈 =
𝟏
ℏ
𝜵𝒌𝑯(𝒌)

𝜴 = 𝑬𝒔𝒐
4𝑬𝒔𝒐𝑬 ±

/𝑬
𝒔𝒐

𝒗 𝒈
,𝒛

.
/𝒗

𝒔𝒐

𝜹 = 𝟎 𝜹 = 𝟐𝑬𝒔𝒐
𝜴 = 𝟔𝑬𝒔𝒐

𝒌𝟏, 𝝎𝟏
𝒌𝟐, 𝝎𝟐

𝒌𝒛/𝒌𝒔𝒐 𝒌𝒛/𝒌𝒔𝒐

𝒌𝒛/𝒌𝒔𝒐 𝒌𝒛/𝒌𝒔𝒐

𝒗𝒔𝒐 = ℏ𝒌𝒔𝒐/𝒎

Two hyperfine 
states coupled by 
lasers.



Modified Single-Particle 
Dispersion → New Physics

For 1D spin-orbit coupling (equal mixture of  Rashba and Dresselhaus

coupling): 𝑯 = (
𝒑𝒙𝟐*𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
)𝑰𝟐 +

ℏ𝒌𝒔𝒐
𝒎
𝒑𝒛𝝈𝒛 + 𝜴𝝈𝒙 + 𝜹𝝈𝒛

𝑬± =
𝒑𝒙𝟐.𝒑𝒚𝟐

𝟐𝒎
+ 𝒑𝒛𝟐

𝟐𝒎
± (ℏ𝒌𝒔𝒐𝒑𝒛

𝒎
+ 𝜹

𝟐
)𝟐+ 𝜴𝟐

𝟒

Why is this of  interest? Expand 𝑬4 for large 𝜴 and 𝜹 ≠ 𝟎 around 𝒑𝒛,𝒎𝒊𝒏4 :

𝑬4 = 𝒄𝒐𝒏𝒔𝒕 +
𝒑𝒛 − 𝒑𝒛,𝒎𝒊𝒏4 𝟐

𝟐𝒎
+⋯

Like a charged particle in a uniform vector potential 𝑨∗: 𝒆𝑨∗ = 𝒑𝒛,𝒎𝒊𝒏4 𝒆𝒛!

Possibility to simulate physics of  charged particles (e.g., fractional 
quantum Hall effect) with neutral atoms!

𝒑𝒛

𝑬(𝒑𝒛)



Two Bosons With One-
Dimensional Spin-Orbit Coupling 

3D system with 1D SOC (spin-orbit coupling + Raman coupling + 
detuning) → Two-body bound state or not? 

Rewrite Hamiltonian in relative coordinates (𝒓 and 𝒑 with reduced 
mass 𝝁) and center-of-mass coordinates (𝑹 and 𝑷 with total mass 𝑴):

𝑯 = 𝑯𝒓𝒆𝒍 + 𝑯𝒄𝒎

𝑯𝒓𝒆𝒍 𝑷𝒛

=
𝒑𝒙𝟐 + 𝒑𝒚𝟐 + 𝒑𝒛𝟐

𝟐𝝁
𝑰𝟐
(𝟏)⨂𝑰𝟐

𝟐 +
ℏ𝒌𝒔𝒐𝒑𝒛
𝝁

𝝈𝒛
𝟏 ⨂𝑰𝟐

𝟐 − 𝑰𝟐
𝟏 ⨂𝝈𝒛

𝟐

+ 𝜴 𝝈𝒙
𝟏 ⨂𝑰𝟐

𝟐 + 𝑰𝟐
𝟏 ⨂𝝈𝒙

𝟐 + 𝜹 +
ℏ𝒌𝒔𝒐𝑷𝒛
𝑴

𝝈𝒛
𝟏 ⨂𝑰𝟐

𝟐 + 𝑰𝟐
𝟏 ⨂𝝈𝒛

𝟐

+ 𝑽𝟐𝒃(𝒓)𝑰𝟐
(𝟏)⨂𝑰𝟐

(𝟐)

𝑯𝒓𝒆𝒍, 𝑷𝒛 = 𝟎

x

coupling

parametric dependence on CoM momentum (call N𝜹) 



Demands On Numerical 
Method

• Must be… 

• …able to treat multiple channels.

• …able to describe small and large length scales.

• …able to describe eigen energies and eigen states that 
vary by orders of  magnitude.

• …applicable to two and three particles.

Our method of  choice: 
Stochastic variational approach with explicitly 
correlated Gaussian basis function (see also 
contributed talk yesterday by Roy Yaron).



Basis Set Expansion: 
Variational Approach

Let 𝜱𝒋 with 𝒋 = 𝟎, 𝟏,⋯ be an orthonormal complete set.

Any eigen state 𝝋𝒍 with energy 𝑬𝒍 of 𝑯 can be expanded as 
𝝋𝒍 = ∑𝒋D𝟎E 𝒄𝒋

(𝒍)𝜱𝒋.

In reality: 𝝓𝒍 = ∑𝒋D𝟎
𝑵𝒃 𝒄𝒋

(𝒍)𝜱𝒋 (𝑵𝒃 < ∞; 𝝓𝒍 is an approximation to 𝝋𝒍).

Form matrix 𝑪 with matrix elements 𝑪𝒋𝒍 = 𝒄𝒋
(𝒍).

Eigenvalues 𝜺𝒍 of matrix equation 𝑯 𝑪 = �⃡� 𝑪 have the following property:

𝑬𝟎 ≤ 𝜺𝟎, 𝑬𝟏 ≤ 𝜺𝟏, ⋯ (variational upper bounds).



Basis Set Expansion: 
Variational Approach

Question: What changes if 𝜱𝒋 with 𝒋 = 𝟎, 𝟏,⋯ are not orthogonal?



Basis Set Expansion:
Variational Approach

Now: Allow 𝜱𝒋 with 𝒋 = 𝟎, 𝟏,⋯ to be linearly dependent (but not too 
much).

Expand 𝝓𝒍 = ∑𝒋D𝟎
𝑵𝒃 𝒄𝒋

(𝒍)𝜱𝒋 (𝑵𝒃 < ∞; 𝝓𝒍 is an approximation to exact eigen
state 𝝋𝒍).

Form matrix 𝑪 with matrix elements 𝑪𝒋𝒍 = 𝒄𝒋
(𝒍).

The eigenvalues 𝜺𝒍 of generalized eigen value equation 𝑯 𝑪 = �⃡� 𝑶 𝑪, 
where 𝑶𝒋𝒍 = 𝚽𝒋|𝚽𝒍 , have the following property:

𝑬𝟎 ≤ 𝜺𝟎, 𝑬𝟏 ≤ 𝜺𝟏, ⋯ (variational upper bounds).



Basis Set Expansion:  
Variational Approach

Take advantage of  the fact that the basis functions 𝜱𝒋 can be 
“anything”.

Pick 𝜱𝒋 such that integrals have compact analytical expressions.

Pick 𝜱𝒋 such that the different length scales of  the system are covered.

Take advantage of  the fact that low-energy Hamiltonian can be 
constructed using different functional forms for interaction potential:

𝑯 =P
𝒋

𝑻𝒋 + 𝑽𝒔𝒐𝒄,𝒋 +P
𝒋6𝒌

𝑽𝟐𝒃,𝒋𝒌 + P
𝒋6𝒌6𝒍

𝑽𝟑𝒃,𝒋𝒌𝒍

𝑽𝟐𝒃,𝒋𝒌 = 𝒗𝟎𝒆𝒙𝒑 −
𝒓𝒋𝒌
𝟐

𝟐𝒓𝟎𝟐
Require 𝒓𝟎 ≪ other scales: 
Need to resolve multiple scales. 
Use 𝜱𝒋 with “different widths.”

purely repulsive Gaussian
(see also talks by Kievsky)



Basis Set Expansion:
Stochastic Variational Approach

Method first introduced to cold atom community for bosons by Sorensen, Fedorov and 
Jensen, AIP Conf. Proc. No. 777, p. 12 (2005). See also work on fermions by von Stecher
and Greene, PRL 99, 090402 (2007). For details see: Suzuki and Varga (Springer, 1998); von 
Stecher, Greene, Blume, PRA 77, 043619 (2008). 

rr0

other lengthsIdea: 

Use basis functions that involve Gaussians with 
different widths in interparticle distances 
(correlations). 

Large number of  non-linear parameters that are 
being optimized semi-stochastically.

Simplest case: Basis functions with 𝑳 = 𝟎 and 𝜫 = +𝟏.

𝜱𝒋 = 𝐞𝐱𝐩 −∑𝒔B𝒕𝑵 𝒓𝒔𝒕𝟐

𝟐𝒅𝒋,𝒔𝒕
𝟐 = 𝐞𝐱𝐩 − 𝟏

𝟐
𝒙𝑻 𝑨 𝒙 .

𝒙: Denotes Jacobi vectors 𝝆𝟏, 𝝆𝟐, ⋯. 
𝑨: (𝑵 − 𝟏)×(𝑵 − 𝟏) matrix with 𝑵(𝑵 − 𝟏)/𝟐 independent parameters.

𝝆𝟏

𝝆𝟐
𝝆𝟑



Stochastic Variational Approach: 
Outline of  Algorithm

• Pick basis function 𝜱𝟏 and calculate 𝜺𝟏.

• Goal: Add 𝜱𝟐. Procedure:
• Pick 𝜱𝟐,𝟏,…,𝜱𝟐,𝒑 (𝒑~𝟏 − 𝟏𝟎𝟎𝟎𝟎).
• Calculate 𝜺𝟐,𝟏,…,𝜺𝟐,𝒑. 𝜺𝟐,𝒋 is eigen value of  target state if  basis function 
𝜱𝟐,𝒋 is added to basis (𝒋 = 𝟏,⋯ , 𝒑).

• Determine 𝜱𝟐 = 𝜱𝟐,𝒋 such that 𝜺𝟐 = 𝜺𝟐,𝒋 = 𝐦𝐢𝐧(𝜺𝟐,𝟏,…,𝜺𝟐,𝒑).
• Diagonalize Hamiltonian matrix to obtain eigenvalues and eigenvectors.

• To add 𝜱𝟑, proceed as above.

• Once basis set is “complete”, calculate structural properties.

• Can optimize ground or excited state. 

• Can optimize multiple states simultaneously.



Harmonically Trapped Five-
Boson System: Convergence

r0 = 0.01aho
as = 0.0096aho

For each Nb, try 
a few 1000 and 
keep the best.

Used energy to benchmark effective 
field theory Hamiltonian: 
Johnson, Blume, Yin, Flynn, 
Tiesinga, NJP (2012).



Lowest energy at unitarity 
(1/as=0):

r0=0.07aho

0.04

Two-peak structure of up-
down pair distribution function: 
Small 𝒓𝒖𝒅 peak: pair formation.
Large 𝒓𝒖𝒅 peak: unpaired.

Trapped (3,3) System: Energy 
And Pair Distribution Function

extrapolate to obtain
zero-range energy



A Few More Comments

Basis functions need to be symmetrized: Five identical bosons 
implies 5!=120 permutations.

Use physical insight to choose 𝒅𝒋,𝒔𝒕 efficiently:
E.g., “2+1” or “1+1+1” configuration.

If  parameter windows for non-linear variational parameters are not 
set properly, a non-converged energy may appear converged…

Basis sets tend to be small (a few 1000); but we work hard to select 
the basis functions we want.

Beyond 𝑳𝜫 = 𝟎. states? Many possibilities… Global vector 
approach is quite convenient.



Spin-Orbit Coupling: 
Need To Account For Spin

𝜱𝒋 = 𝐞𝐱𝐩 −)
𝒔&𝒕

𝑵
𝒓𝒔𝒕𝟐

𝟐𝒅𝒋,𝒔𝒕𝟐 + )
𝒕2𝟏

𝑵.𝟏

𝜾𝒔𝒋,𝒕 J 𝝆𝒕

Spatial two-body
correlations

Correlation between spin and 
spatial degrees of  freedom.

Can be rewritten as
∑𝒕:𝟏𝑵 𝜾𝑺𝒋,𝒕 b 𝒓𝒕

Matrix elements have compact analytical expressions.

𝜳𝒓𝒆𝒍 = ∑𝒋2𝟏
𝑵𝒃 𝒄𝒋𝝍𝒋 and 𝝍𝒋 = 𝓢(𝜱𝒋 𝝆𝟏, … , 𝝆𝑵.𝟏 𝝌𝒋)

Bound state: 
Energy of  dimer with CM momentum 𝑷𝒛 is more negative than that of  two free 
atoms with the same 𝑷𝒛.
Energy of  trimer with CM momentum 𝑷𝒛 is more negative than that of  three 
free atoms with the same 𝑷𝒛 and that of  a dimer and an atom with the same 𝑷𝒛.



Two Bosons With One-
Dimensional Spin-Orbit Coupling 

3D system with 1D SOC (spin-orbit coupling + Raman coupling + 
detuning) → Two-body bound state or not? 

Rewrite Hamiltonian in relative coordinates (𝒓 and 𝒑 with reduced 
mass 𝝁) and center-of-mass coordinates (𝑹 and 𝑷 with total mass 𝑴):

𝑯 = 𝑯𝒓𝒆𝒍 + 𝑯𝒄𝒎

𝑯𝒓𝒆𝒍 𝑷𝒛

=
𝒑𝒙𝟐 + 𝒑𝒚𝟐 + 𝒑𝒛𝟐

𝟐𝝁
𝑰𝟐
(𝟏)⨂𝑰𝟐

𝟐 +
ℏ𝒌𝒔𝒐𝒑𝒛
𝝁

𝝈𝒛
𝟏 ⨂𝑰𝟐

𝟐 − 𝑰𝟐
𝟏 ⨂𝝈𝒛

𝟐

+ 𝜴 𝝈𝒙
𝟏 ⨂𝑰𝟐

𝟐 + 𝑰𝟐
𝟏 ⨂𝝈𝒙

𝟐 + 𝜹 +
ℏ𝒌𝒔𝒐𝑷𝒛
𝑴

𝝈𝒛
𝟏 ⨂𝑰𝟐

𝟐 + 𝑰𝟐
𝟏 ⨂𝝈𝒛

𝟐

+ 𝑽𝟐𝒃(𝒓)𝑰𝟐
(𝟏)⨂𝑰𝟐

(𝟐)

𝑯𝒓𝒆𝒍, 𝑷𝒛 = 𝟎

x

coupling

parametric dependence on CoM momentum (call N𝜹) 
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Non-Interacting Relative 
Dispersion Curves Along 𝒛

increase 

N𝜹 = 𝜹 +
ℏ𝒌𝒔𝒐𝑷𝒛
𝑴

.

BB
BB BB

BB
BB

BB

N𝜹 = 𝟎 N𝜹 = 𝟏. 𝟕𝑬𝒔𝒐 N𝜹 = 𝟐. 𝟓𝑬𝒔𝒐

fixed 
Raman 
coupling

𝑬 𝒓
𝒆𝒍
/𝑬

𝒔𝒐
−

𝑬 𝒃
𝒊𝒏
𝒅𝒊
𝒏𝒈

/𝑬
𝒔𝒐

𝟏/
𝟐

𝒑𝒛/(ℏ𝒌𝒔𝒐) 𝒑𝒛/(ℏ𝒌𝒔𝒐) 𝒑𝒛/(ℏ𝒌𝒔𝒐)

𝒑𝒛/(ℏ𝒌𝒔𝒐)𝒑𝒛/(ℏ𝒌𝒔𝒐)

Transition from 
double- to single-
minimum regime.

increase 𝛀.
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Two Identical Bosons: 
𝛀 = 𝟐𝑬𝒔𝒐; %𝜹 ≥ 𝟎 (𝒂↑↑ = 𝒂↑↓ = 𝒂↓↑ = 𝒂↓↓)

increase 

N𝜹 = 𝜹 +
ℏ𝒌𝒔𝒐𝑷𝒛
𝑴

.

BB
BB BB

BB
BB

BB

N𝜹 = 𝟎 N𝜹 = 𝟏. 𝟕𝑬𝒔𝒐 N𝜹 = 𝟐. 𝟓𝑬𝒔𝒐

NI two-
particle
dispersion

Negative of  
binding 
energy;
deviations 

from 
4ℏ𝟐

𝒎𝒂𝒔𝟐

−
𝑬 𝒃

𝒊𝒏
𝒅𝒊
𝒏𝒈

/𝑬
𝒔𝒐

𝟏/
𝟐

−
𝑬 𝒃

𝒊𝒏
𝒅𝒊
𝒏𝒈

/𝑬
𝒔𝒐

𝟏/
𝟐

𝒑𝒛/(ℏ𝒌𝒔𝒐) 𝒑𝒛/(ℏ𝒌𝒔𝒐) 𝒑𝒛/(ℏ𝒌𝒔𝒐)



So far: 3D Space with 1D SOC.
Now: 3D Space with 3D SOC.  

Three BB, 
one FF 
bound 
states
(𝜴 = 𝟐𝑬𝒔𝒐)

Scattering 
threshold:

Where does 
the “shape” 
come from?

BB (gr.) BB (1st exc.)

BB (2nd exc.) FF (gr.)

DM

SM

𝜴/𝑬𝒔𝒐

K 𝜹/
𝑬 𝒔

𝒐



“Shape”? 
Simple Qualitative Picture

𝜴 = 𝟎 (analytical)𝛀 = 𝟐𝑬𝒔𝒐 (numerical)
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Binding Energy For 𝛀 = 𝟐𝑬𝒔𝒐: 
Lowest BB State
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Maximum binding roughly where 
the dispersion has three global 
minima

momentum space real space

Weakly-bound state for 
certain negative free-space 
s-wave scattering lengths.

For FF, see: Shenoy, PRA 88, 033609 (2013).
Dong et al., PRA 87, 043616 (2013).

W 𝜹/
𝑬
𝒔𝒐

𝒑𝒛/(ℏ𝒌𝒔𝒐) 𝒛𝒌𝒔𝒐



With SOC: Fate Of  Three-
Boson Efimov States?

𝑯 = (
𝒑𝟏𝟐𝟐

𝟐𝝁𝟏𝟐
+
𝒑𝟏𝟐,𝟑𝟐

𝟐𝝁𝟏𝟐,𝟑
+)

𝒋&𝒌

𝒈𝟐𝜹 𝒓𝒋𝒌 + 𝒈𝟑𝜹 𝒓𝟏 − 𝒓𝟐 𝜹 𝒓𝟐 − 𝒓𝟑 ) 𝑰𝟖

+
ℏ𝒌𝒔𝒐
𝒎

… + 𝛀 … + 5𝜹 … .

Continuous scaling symmetry (easy to check)! 
𝒕 → 𝝀𝟐𝒕; 𝒓 → 𝝀𝒓; 𝒂𝒔 → 𝝀𝒂𝒔; 𝒌𝒔𝒐 → 𝝀;𝟏𝒌𝒔𝒐; 𝛀 → 𝝀;𝟐𝛀; 
<𝜹 → 𝝀;𝟐<𝜹; 𝑬 → 𝝀;𝟐𝑬; 𝜿∗ → 𝝀;𝟏𝜿∗

Discrete scaling symmetry? 
𝒕 → 𝝀𝟎𝟐𝒕; 𝒓 → 𝝀𝟎𝒓; 𝒂𝒔 → 𝝀𝟎𝒂𝒔; 𝒌𝒔𝒐 → 𝝀𝟎;𝟏𝒌𝒔𝒐; 𝛀 → 𝝀𝟎;𝟐𝛀; 
<𝜹 → 𝝀𝟎;𝟐<𝜹; 𝑬 → 𝝀𝟎;𝟐𝑬; 𝜿∗ → 𝜿∗; 𝝀𝟎 ≈ 𝟐𝟐. 𝟕

changes and extra
terms due to SOC



Generalized Radial Scaling Law? 
!𝜹 = 𝟎 And (𝜿∗)"𝟏 = 𝟔𝟔𝒓𝟎

(𝒌𝒔𝒐)/𝟏 = 𝟐𝟓𝒓𝟎.

𝜴 = 𝟎. 𝟎𝟎𝟏𝟔 ℏ𝟐

𝒎𝒓𝟎
𝟐.

𝒆𝒏𝒆𝒓𝒈𝒚 ×𝝀𝟎𝟐

×𝟒

×𝟏

×𝟏

dimer dimer

(𝒌𝒔𝒐)/𝟏 = 𝝀𝟎𝟐𝟓𝒓𝟎.

𝜴 = (𝟎. 𝟎𝟎𝟏𝟔/𝝀𝟎𝟐)
ℏ𝟐

𝒎𝒓𝟎
𝟐.



Generalized Radial Scaling Law 
(Five Instead Of  Two Axes)

𝑬𝟐

𝑬𝟐

𝑬𝟑

𝑬𝟑

Solid line (gr. st.):
(𝜿∗)/𝟏 = 𝟔𝟔𝒓𝟎.
(𝒌𝒔𝒐)/𝟏 = 𝟐𝟓𝒓𝟎.
𝜴 = 𝟐𝑬𝒔𝒐; N𝜹 = 𝟎.
Dots (exc. st. of  𝑯
with scaled 
parameters). 

Discrete 
scaling 
symmetry 
(𝝀𝟎 ≈ 𝟐𝟐. 𝟕)!
𝒂𝒔 → 𝝀𝟎𝒂𝒔; 
𝒌𝒔𝒐 → 𝝀𝟎8𝟏𝒌𝒔𝒐;
𝛀 → 𝝀𝟎8𝟐𝛀; 
W𝜹 → 𝝀𝟎8𝟐W𝜹;
𝑬 → 𝝀𝟎8𝟐𝑬.
𝜿∗ → 𝜿∗.

Solid lines (gr. st.
manifold):
(𝜿∗)/𝟏 = 𝟔𝟔𝒓𝟎.
(𝒌𝒔𝒐)/𝟏 = 𝟏𝟎𝟎𝒓𝟎.
𝜴 = 𝟐𝑬𝒔𝒐. N𝜹 = 𝟎.
Dots (exc. st.
manifold of  𝑯 with 
scaled 
parameters). 

Collapse of  
neighboring energy levels!

Collapse of  neighboring 
energy manifolds!



Proposal:
Experimental Observability

Using three-body 
parameter for 133Cs.
Lowest state in excited 
state manifold.
(𝒌𝒔𝒐)4𝟏 ≈ 𝟏𝟎, 𝟏𝟔𝟎𝒂𝟎.
𝒌𝒔𝒐
𝜿∗
≈ 𝟏. 𝟑𝟐 (exc. state).

𝜴 = 𝟐𝑬𝒔𝒐.

Ground state resonance 
mostly unchanged. 

Excited state resonance: 
Enhanced losses between 
𝒂𝒔 ≈ −𝟕, 𝟕𝟗𝟎𝒂𝟎 and 
𝒂𝒔 ≈ −𝟐𝟎, 𝟏𝟗𝟎𝒂𝟎. 
Scattering length window!
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Summary

Discussion of  one few-body technique: 
Stochastic variational approach with explicitly correlated 
Gaussians.

Application of  this approach to bosons in the presence of  1D 
spin-orbit coupling.

Generalized radial scaling law for three identical bosons.



Many Thanks To Collaborators

Debraj Rakshit, Xiangyu (Desmond) Yin, Qingze Guan:
ECG approach.

Qingze Guan:
ECG approach and generalized radial scaling law.



Thank You!


