Applications to few- and many-body systems

(4rd lesson)

Applications



Zero- and finite-range description of two-particles

@ In the zero-range theory

_k+i/a
k—i/a

kcotd = —1/a— S(k) =

@ In the finite-range theory

. k+i/aBk+i/rB
N k*i/aBk*i/rB

kcotd = —1/a+ resk?/2 — S(k)

withrg =a— ag

@ In the finite-range theory a two-parameter potential is used to
reproduce the two parameters of the theory — correct pole
structure of the S-matrix
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Zero- and finite-range description of two-particles

@ In the zero-range theory the extension to more particles goes
through the solution of the zero-range FY equations (for three
particles the STM equation)

» Efimov spectrum
» Scale invariance
» Two-level structure for N > 3

@ In the finite-range theory the two-parameter potential used to
reproduce the low energy S-matrix behavior is taken to solve the
Schroedinger equation for more than two particles

@ In the two-body system we saw how to make things independent
of the choice of the two-parameter potential —
charaterization of the universal window

@ What happens in the three- and more particle systems?

@ Could we introduce a finite-range parameter? how?

@ And how this description (universal regime) deviates as N
increases (non-universal regime)
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Gaussian characterization of the universal window for
two particles
We characterize the universal window with a Gaussian potential:

V(r) = Voe /%

where r is the interparticle distance, while the strength Vy and range ry
are parameters useful to explore the low-energy dynamics associated
with the existence of one (bound or virtual) state close to threshold.

For bound states, the wave function is obtained by solving the s-wave
Schrédinger equation

PomEVy . 1
(822_ e g ) e =0
where z = r/ry and ¢p(Zz) is the reduced wave function and
h2
ma

E=-
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Gaussian characterization of the universal window
For zero-energy the wave function, ¢q, is obtained by solving

922 12

2 2
( ? _mEVo

) $o(2) =0

with ¢o(z — 00) — 1 — zrp/a, from which the scattering length a is

extracted and the effective range is

feff = 200 /ooo [(1 — zro/a)? - aﬂ dz

lefr/ o

Vo/(h?/mr§)

1.43522
2.41303
2.89034
3.20006

WN = OIS

2.6840

17.7957
45.5735
85.9632
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RG trajectory

Inside the universal limit, the strength parameter Cy = %h—" Vo can
be expanded in powers of the small parameters ry/a as

~ NS mr0 B oo

Cr= -2 Vo = Cw <1+a1 +a2() +) (1)

The pure number C., = 2.379 is the same for all gaussians. The
above equation maps the renormalization group (RG) trajectories as
the interaction approaches the scaling limit.
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Gaussian characterization
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Gaussian characterization of the universal window for
three bosons
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Notable points

The values at the unitary limit:

—ros® = —0.4883 £ /) e/
—rori" = ~0.02125, 22.979
—rokt® = ~0.0009362, 22.696 . 22,694
Values at < = 0
—a® = —4.371, 2™ gl /%
—a" = —74.0r 19.93
—a® = ~1613n, 21.80 227
and the almost model independent quantities:
(0) a% = _214 for van der Waals systems ~ —2.2
e _ 157
K&z) a® = —1.51 the zero-range theory ~ —1.507
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van der Waals universality

Using the LM2M2 helium trimers: E{*) = 126.4mK and E{") = 2.27mK
and the dimer: E; = 1.303 mK, the position of these data on the plot
can be located through the angle 6 defined as Eé”)/Eg = tan? .

The axis value is ry/ag = 0.061 corresponding to a Gaussian range
réo) = 11.15 a9 with which a Gaussian potential reproduces the dimer
and ground state trimer energies. From that value, the three-body
parameters of the helium trimer, ground and excited states, can be
estimated

2
EQ = %2 [78)} = 83.1 mK — 84 mK for the LM2M2 potential

Oﬁ

2
SR '{g))} = 0.157mK — 0.157 mK for the LM2M2 potential
o
At the three-atom continuum the characteristic range predicts the
value 8% = 487 ap. The Gaussian trajectory predicts
a(f])/?vdw ~ —9.6, in close agreement with the universal value
observed in van der Waals species.
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Efimov radial law

E(”)
53 _tan?
5 tan< ¢

2
e ES) + By = e 2n=n)n/s0 gAE)/sIE,
m

(4rd lesson) Applications 4-8 October 2021 11/40



Efimov radial law

where A(¢) is the zero-range universal function.
e The same for all levels
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Finite-range Efimov radial law
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Finite-range Efimov radial law

where AZ(&) is the finite-range level function.
e AJ(&) = splog 3 + 2 S5 A(¢)forn>2

2L | @ Calculated Points @ Calculated points
—— Polynomial Fit 2 - |— Polynomial Fit

1
S5y =
< ol 4
ok
1t
1t
- —7/8% —3/4n —5/87 —1/27 —3/87 - /8t —3/4r  —5/87  —1/2r  —3/8x
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Finite-range Efimov radial law

The results for a Gaussian potential of range ry with variable strength
can be summarized in the following equations

a mé)—tang

rorl” = 1§72 ©/2%sin ¢

with " = ros'™ and E{" = n2[x{"]2/m.
e The pure numbers rof-e(”) = yén), and AY" are the same for all
Gaussian potentials.

The finite-range equation can be related to the zero-range equation as

(n)
(n) — ’Y(n) eB(©)/2s0gjn ¢ (1 n fol'5 )

(n)

with T'{") the finite-range parameter of level n, T{" — 0 as n > 2
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Gaussian characterization of the window for N, A > 3

@ The Gaussian characterization of the universal window can be
extended to describe systems composed by more than three
particles.

@ The DSI, which emerges in the three-body sector and gives rise to
the Efimov spectrum, strongly constrains the N > 3 (bosons) or
A > 3 (nucleons) energy spectrum.

@ For equal bosons, where the spatial wave function is symmetric,
DSI can be observed well beyond three particles.

@ In the case of A nucleons, the spatial-symmetric wave function is
dominant only up to four particles

@ Deviations from the bosonic-Efimov scenario appear for the A > 4
levels

@ It is interesting to explore how the energy levels emerge from the
unitary limit.
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Gaussian characterization for N > 3

o Defining the angle: agx\["” = tan¢
the spectrum is determined by the equation

with m = 0 being the N-body ground state and m = 1 the excited
state

@ The pure numbers 7(m) = roni”,g, determining the energies at the
unitary limit, E( N) are characteristic of every Gaussian potential.

@ The energy of the level mis E{” = n2[x\{"12/m and AN(6) is the
Gaussian level function for N bosons in the states m =10, 1:

E( )+E2

(9) = §plog —~———
Effg)
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Gaussian characterization for N < 6
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Gaussian characterization for N < 6

The N bosons spectrum can be put in the following way:

e—A(8)/2s

cos¢

k" ag =tan¢, w\Nag+ Ty =

D U= W

1 : a o
e
VPQ*/
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Gaussian characterization of the universal window

@ The gaussian charaterization for three bosons does not show the
Thomas collapse

@ Itintroduces a finite-range parameter Fg”) and for N > 3 Fsvm), with
m=20,1

@ For N = 3 the gaussian charaterization captures important
properties observed in experiments as the van der Waals
universality

@ It is able to describe (theoreticaly) movements of the helium trimer
along the window

@ Can this description be extended for general N > 3

@ We can expect a break down of the universal plus finite-raneg
description as N >> 3

@ What emerges is a correlation between few- and many-body
dynamics
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Universal window for N bosons

Potential Ex(mK) Es(mK) E4mK)  r(ag) rt(ap)
HFD-HE2 08301 1172 5356 11.146 11.840
LM2M2 1.3094 1265  559.2 11150 11.853
HFD-B3-FCH 1.4475 129.0 5661  11.148 11.853
CCSAPT 15643  131.0 5717 11149  11.851
PCKLJS 16154 131.8 5739 11.148 11.852
HFD-B 16921 1331 5773 11149 11.854
SAPT96 1.7443 1340  580.0 11.147 11.850

\ 1K =-0.4883]
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Universal window for N bosons

¢ The different trimer predictions are on top of the curve predicted by

the following potential:
o for N=3
V(S)(rij) _ VéS)e—rilz./(réS))z

this potential, with variable strength describes the motion along the
universal particles for the helium dimer and trimer

eforN=4
VO(r) = Ve /0"

this potential, with variable strength describes the motion along the
universal particles for the helium dimer and tetramer

¢ Up to which number of particles this behavior will hold?
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Universal window for N bosons
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This behavior degraded between 10 to 20 bosons —
a non universal behavior appears!
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From Universal to non-universal behavior

@ The gaussian characterization has been done using an attractive
gaussian interaction

@ As N — oo the ground state energy per particle En/N — oo
@ To stabilize the system a repulsion is needed
@ Based on the results of EFT at LO the following potential can be

studied o s .
V=1 e 0+ W Y e i/
i<j i<j<k

with p2 = (2/3)(rf + & + rg)
@ rp and Vj are fixed to reproduce the two-body physics: dimer

energy and scattering length
@ W, could be fixed to reproduce the trimer energy
@ The range of the three-body fore py has to be analyzed
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From Universal to non-universal behavior
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From Universal to non-universal behavior

physical point

unitary point

SGP  HFD-HEZ | SGP  HFD-HE2
rolao] 10.0485 10.0485
VoIK] 1.208018 1.150485
polao] 8.4853 8.4853
WolK] 3.011702 3.014051
EAK] 0.536 0.536 0.440 0.440
Es[K] 1.251 1.266 1.076 1.076
Es[K] 2.216 2.232 1.946 1.963
Eio/10[K] 0.792(2)  0.831(2) | 0.714(2)  0.746(2)
Ezo/20[K] 1525(2)  1.627(2) | 1.389(2)  1.491(2)
Eso/40[K] 2.374(2) 2482(2) | 2.170(2)  2.308(2)
Ezo/70[K] 3.07(1) 3.14(1) 2.80(1) 2.92(1)
Ei1/112[K]  3.58(2) 3.63(2) 3.30(2) 3.40(2)
En/N(co)[K]  7.2(3)* 7.14(2) 6.8(3)* 6.72(2)
HFD-B [K] 7.33(2) 6.73(2)

e the pg parameter works as a non-universal parameter to fix the correct amount of repulsion

needed to describe the curve En/N
e |t takes into account non-universal physics
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The three-nucleon system
@ The two-nucleon states J™ = 0" and 17 belongs to the universal
window.
@ The O* state is an s-wave state
@ The 1* has a dominant s-wave component, ~ 95%

@ The lightest nuclei, 2H, 3H, 3He and “He have large probabilities to
be in L = 0, we expect to observe universal properties.

@ Important questions to be clarified are the lack of excited states in
the three- and four-nucleon systems.

@ The doublet neutron-deuteron scattering length, 2a,q4 ~ 0.65fm is
very small value compared to the triplet neutron-proton scattering
length anp ~ 5.2 fm.

@ Data for low energy neutron-deuteron scattering reveal the
presence of a triton virtual state.

@ All these properties can be traced back to the position of the
nuclear system inside the universal window.
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The three-nucleon system

e The study of the universal window in the case of three nucleons has
to consider the two different values of the singlet and triplet scattering
lengths, as and a;.

e the nuclear plane is defined when the ratio as/a; is close to the
experimental value, as/a; = —4.38

¢ To characterize the universal window we construct a spin-dependent
Gaussian potential with different strengths and ranges in the
spin-isospin channels S, T =0,1and 1,0

V(r) = Vo™ /5Py + Vie /Py

e Py and Py are projectors onthe S, T =0,1and S, T = 1,0 channels
¢ In the following we study the spectrum of the three-nucleon

J™ = 1/27" state considering ry = ry, for which choice, at the unitary
limit, the spectrum coincides with the boson case.

e Vp and V; are varied maintaining as/a; = —4.38
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The universal window for A=2.3.4
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The universal window for A=2,3

Two-body system
—— Three-boson system (ground state)
—— Three-fermion system (ground state) _
25 |--- Three-boson system (excited state) a/a=1
--- Three-fermion system (excited state)
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Gaussian characterization for A < 6
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Gaussian characterization for A < 6

a(m)  E(MeV) E;MeV) E;(MeV) E,MeV) E;(MeV) PHe(MeV) OLi(MeV)

5.4802 -2.2255  -10.2455 - -39.843 -11.19 -41.60 -46.74
5.5980 -2.1098  -10.0056 - -39.221 -10.93 -40.87 -45.82
6.0683 -1.7270 -9.1903 - -37.093 -10.01 -38.36 -42.71
6.6607 -1.3762 -8.4054 - -35.017 -9.14 -35.95 -39.67
7.4310 -1.0593 -7.6526 - -32.997 -8.31 -33.58 -36.77
8.4756 -0.77842  -6.9333 - -31.035 -7.52 -31.31 -33.95
9.9750 -0.53599  -6.2493 - -29.135 -6.78 - -31.23
12.3136  -0.33466  -5.6023 - -27.300 -6.08 - -28.62
16.4715  -0.17736  -4.9945 - -25.536 -5.43 - -26.17
20.0638 -0.11633  -4.7058 -0.1168 -24.682 -5.13 - -24.96
22.6041 -0.09038  -4.5654 -0.0920 -24.262 -4.98 - -24.41
25.9589  -0.06756  -4.4278 -0.0705 -23.847 -4.83 - -
30.5953  -0.04794  -4.2927 -0.0530 -23.437 -4.69 - -
374216  -0.03158  -4.1605 -0.0385 -23.032 -4.55 - -
48.4699 -0.01855  -4.0311 -0.0270 -22.633 -4.42 - -
69.4131 -0.00891 -3.9044 -0.0182 -22.238 -4.28 - -
124.3314 -0.00273  -3.7807 -0.0119 -21.850 -4.15 - -
00 0 -3.6322 -0.0068 -21.378 -4.00 - -
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Gaussian characterization for A < 6

@ The energies are described only quantitatively

@ Based on EFT at LO (and the results on bosons), we introduce a
three-body force

W(p) = Wy e (o +ist153)/0f

@ with the strength and range fixed to describe E; and E4
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Gaussian characterization for A >> 3
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From few to many bodies

@ Inside the universal window we observe universal behavior
encoded in two quantities: the dimer energy and the scattering
length

@ To describe these two quantities we contruct a two-parameter
potential used to characterize the universal window

@ For more than two bodies this potential is able to capture many
dynamical properties

@ Increasing the number of particles non-universal behavior could
appear

@ It can be taken into account by fixing with detail the range of the
three-body repulsion

@ This parameter can be fixed in the few-body sector to describe for
example E3 and E4

@ The complete potential is parametrized by four low energy
observables

@ This implies a strong correlation between the few-body and
many-body dynamics
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The 2 + 1 scattering length

@ In the two-body system the scattering length and the dimer energy
are stricted correlated inside the universal window:
kg =1/a+ resk5/2

@ The atom-dimer scattering length is stricted correlated to the
discrete spectrum

@ The functional form in zero-range theory was derived by Efimov

aap/ag = di + dxtan[sy In(k.ag) + 03]

@ di, d> and ds are universal numbers

@ k. is the three-body parameter belonging to one of the three-body
energy branches

@ In the case of finite-range interactions

aap/as = oh + datan[sy In(x{"ro(ap/ro) + Fé”)) + ds]

° Hgn)fo = 7§n)

° rg”) is a finite-range three-body parameter

, is used as the driving term
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The 2 + 1 scattering length
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Putting numbers: At ry/ag = 0.0637 — aap/ag = 1.19
Using the LM2M2 value, ag = 182.22 ay — aap = 217 ag
The LM2M2 value for this quantity of 218.4 a!
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The doublet nd scattering length
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The doublet nd scattering length
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Putting numbers: At ry/ag = 0.457 — anq/ag = 0.08
Using the deuteron value, ag = 4.3fm — a,g = 0.4fm
The experimental value for this quantity of 0.65 fm!
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