
Applications to few- and many-body systems
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Zero- and finite-range description of two-particles

In the zero-range theory

k cot δ = −1/a→ S(k) = −k + i/a
k − i/a

In the finite-range theory

k cot δ = −1/a + reff k2/2→ S(k) =
k + i/aB

k − i/aB

k + i/rB

k − i/rB

with rB = a− aB

In the finite-range theory a two-parameter potential is used to
reproduce the two parameters of the theory→ correct pole
structure of the S-matrix
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Zero- and finite-range description of two-particles
In the zero-range theory the extension to more particles goes
through the solution of the zero-range FY equations (for three
particles the STM equation)

I Efimov spectrum
I Scale invariance
I Two-level structure for N > 3

In the finite-range theory the two-parameter potential used to
reproduce the low energy S-matrix behavior is taken to solve the
Schroedinger equation for more than two particles
In the two-body system we saw how to make things independent
of the choice of the two-parameter potential→
charaterization of the universal window
What happens in the three- and more particle systems?
Could we introduce a finite-range parameter? how?
And how this description (universal regime) deviates as N
increases (non-universal regime)
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Gaussian characterization of the universal window for
two particles
We characterize the universal window with a Gaussian potential:

V (r) = V0e−r2/r2
0

where r is the interparticle distance, while the strength V0 and range r0
are parameters useful to explore the low-energy dynamics associated
with the existence of one (bound or virtual) state close to threshold.
For bound states, the wave function is obtained by solving the s-wave
Schrödinger equation(

∂2

∂z2 −
mr2

0 V0

~2 e−z2 − r2
0

a2
B

)
φB(z) = 0

where z = r/r0 and φB(z) is the reduced wave function and

E = − ~2

ma2
B
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Gaussian characterization of the universal window
For zero-energy the wave function, φ0, is obtained by solving(

∂2

∂z2 −
mr2

0 V0

~2 e−z2

)
φ0(z) = 0

with φ0(z →∞)→ 1− zr0/a, from which the scattering length a is
extracted and the effective range is

reff = 2r0

∫ ∞
0

[
(1− zr0/a)2 − φ2

0

]
dz

n reff/r0 V0/(~2/mr2
0 )

0 1.43522 2.6840
1 2.41303 17.7957
2 2.89034 45.5735
3 3.20006 85.9632
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RG trajectory
Inside the universal limit, the strength parameter C̃λ =

√
π

2
mr2

0
~2 V0 can

be expanded in powers of the small parameters r0/a as

C̃λ =

√
π

2
mr2

0
~2 V0 = C∞

(
1 + α1

r0

a
+ α2(

r0

a
)2 + . . .

)
(1)

The pure number C∞ = 2.379 is the same for all gaussians. The
above equation maps the renormalization group (RG) trajectories as
the interaction approaches the scaling limit.
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Gaussian characterization
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Gaussian characterization of the universal window for
three bosons
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Notable points
The values at the unitary limit:

−r0κ
(0)
∗ = −0.4883 κ

(n)
∗ /κ

(n+1)
∗ eπ/s0

−r0κ
(1)
∗ = −0.02125, 22.979

−r0κ
(2)
∗ = −0.0009362, 22.696 → 22.694

Values at κ(n)
3 = 0

−a(0)
− = −4.37r0 a(n+1)

− /a(n)
− eπ/s0

−a(1)
− = −74.0r0 19.93

−a(2)
− = −1613r0 21.80 → 22.7

and the almost model independent quantities:

κ
(0)
∗ a(0)

− = −2.14 for van der Waals systems ≈ −2.2
κ

(1)
∗ a(1)

− = −1.57
κ

(2)
∗ a(2)

− = −1.51 the zero-range theory ≈ −1.507
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van der Waals universality
Using the LM2M2 helium trimers: E (0)

3 = 126.4 mK and E (1)
3 = 2.27 mK

and the dimer: E2 = 1.303 mK, the position of these data on the plot
can be located through the angle θ defined as E (n)

3 /E2 = tan2 θ.
The axis value is r0/aB = 0.061 corresponding to a Gaussian range
r (0)
0 = 11.15 a0 with which a Gaussian potential reproduces the dimer

and ground state trimer energies. From that value, the three-body
parameters of the helium trimer, ground and excited states, can be
estimated

E (0)
∗ = ~2

m

[
γ0

r (0)
0

]2

= 83.1 mK→ 84 mK for the LM2M2 potential

E (1)
∗ = ~2

m

[
γ1

r (0)
0

]2

= 0.157 mK→ 0.157 mK for the LM2M2 potential

At the three-atom continuum the characteristic range predicts the
value a(0)

− = −48.7 a0. The Gaussian trajectory predicts
a(0)
− /r̃vdW ≈ −9.6, in close agreement with the universal value

observed in van der Waals species.
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Efimov radial law

E (n)
3

E2
= tan2 ξ

−~2

m
H2 = E (n)

3 + E2 = e−2(n−n∗)π/s0 e∆(ξ)/s0E∗
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Efimov radial law

where ∆(ξ) is the zero-range universal function.
• The same for all levels
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Finite-range Efimov radial law

E (n)
3

E2
= tan2 ξ

−~2

m
H2 = E (n)

3 + E2 = e∆
(n)
3 (ξ)/s0E (n)

∗
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Finite-range Efimov radial law

where ∆n
3(ξ) is the finite-range level function.

• ∆n
3(ξ) = s0 log E (n)

3 +E2

E (n)
∗
→ ∆(ξ) for n ≥ 2
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Finite-range Efimov radial law
The results for a Gaussian potential of range r0 with variable strength
can be summarized in the following equations

aBκ
(n)
3 = tan ξ

r0κ
(n)
3 = γ

(n)
3 e∆

(n)
3 (ξ)/2s0sin ξ

with γ(n)
3 = r0κ

(n)
∗ and E (n)

3 = ~2[κ
(n)
3 ]2/m.

• The pure numbers r0κ
(n)
∗ = γ

(n)
3 , and ∆

(n)
3 are the same for all

Gaussian potentials.

The finite-range equation can be related to the zero-range equation as

r0κ
(n)
3 = γ

(n)
3 e∆(ξ)/2s0sin ξ

(
1 +

r0Γ
(n)
3

γ
(n)
3 ab

)

with Γ
(n)
3 the finite-range parameter of level n, Γ

(n)
3 → 0 as n > 2
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Gaussian characterization of the window for N, A > 3

The Gaussian characterization of the universal window can be
extended to describe systems composed by more than three
particles.
The DSI, which emerges in the three-body sector and gives rise to
the Efimov spectrum, strongly constrains the N > 3 (bosons) or
A > 3 (nucleons) energy spectrum.
For equal bosons, where the spatial wave function is symmetric,
DSI can be observed well beyond three particles.
In the case of A nucleons, the spatial-symmetric wave function is
dominant only up to four particles
Deviations from the bosonic-Efimov scenario appear for the A > 4
levels
It is interesting to explore how the energy levels emerge from the
unitary limit.
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Gaussian characterization for N > 3

Defining the angle: aBκ
(m)
N = tan ξ

the spectrum is determined by the equation

r0κ
(m)
N = γ

(m)
N e∆

(m)
N (ξ)/2s0sin ξ

with m = 0 being the N-body ground state and m = 1 the excited
state
The pure numbers γ(m)

N = r0κ
(m)
∗,N , determining the energies at the

unitary limit, E (m)
∗,N , are characteristic of every Gaussian potential.

The energy of the level m is E (m)
N = ~2[κ

(m)
N ]2/m and ∆N

m(θ) is the
Gaussian level function for N bosons in the states m = 0,1:

∆
(m)
N (θ) = s0 log

E (m)
N + E2

E (m)
∗,N
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Gaussian characterization for N ≤ 6
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Gaussian characterization for N ≤ 6

The N bosons spectrum can be put in the following way:

κ
(m)
N aB = tan ξ , κ

(m)
∗,N aB + Γ

(m)
N =

e−∆(ξ)/2s0

cos ξ
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Gaussian characterization of the universal window

The gaussian charaterization for three bosons does not show the
Thomas collapse

It introduces a finite-range parameter Γ
(n)
3 and for N > 3 Γ

(m)
N , with

m = 0,1
For N = 3 the gaussian charaterization captures important
properties observed in experiments as the van der Waals
universality
It is able to describe (theoreticaly) movements of the helium trimer
along the window
Can this description be extended for general N > 3
We can expect a break down of the universal plus finite-raneg
description as N >> 3
What emerges is a correlation between few- and many-body
dynamics
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Universal window for N bosons
Potential E2(mK) E3(mK) E4(mK) r (3)

0 (a0) r (4)
0 (a0)

HFD-HE2 0.8301 117.2 535.6 11.146 11.840
LM2M2 1.3094 126.5 559.2 11.150 11.853
HFD-B3-FCH 1.4475 129.0 566.1 11.148 11.853
CCSAPT 1.5643 131.0 571.7 11.149 11.851
PCKLJS 1.6154 131.8 573.9 11.148 11.852
HFD-B 1.6921 133.1 577.3 11.149 11.854
SAPT96 1.7443 134.0 580.0 11.147 11.850
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Universal window for N bosons

• The different trimer predictions are on top of the curve predicted by
the following potential:
• for N = 3

V (3)(rij) = V (3)
0 e−r2

ij /(r (3)
0 )2

this potential, with variable strength describes the motion along the
universal particles for the helium dimer and trimer

• for N = 4
V (4)(rij) = V (4)

0 e−r2
ij /(r (4)

0 )2

this potential, with variable strength describes the motion along the
universal particles for the helium dimer and tetramer

• Up to which number of particles this behavior will hold?
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Universal window for N bosons
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From Universal to non-universal behavior

The gaussian characterization has been done using an attractive
gaussian interaction
As N →∞ the ground state energy per particle EN/N →∞
To stabilize the system a repulsion is needed
Based on the results of EFT at LO the following potential can be
studied

V = V0
∑
i<j

e−r2
ij /r2

0 + W0
∑

i<j<k

e−2ρ2
ijk/ρ

2
0

with ρ2
ijk = (2/3)(r2

ij + r2
jk + r2

ki)

r0 and V0 are fixed to reproduce the two-body physics: dimer
energy and scattering length
W0 could be fixed to reproduce the trimer energy
The range of the three-body fore ρ0 has to be analyzed
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From Universal to non-universal behavior
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From Universal to non-universal behavior

physical point unitary point
SGP HFD-HE2 SGP HFD-HE2

r0[a0] 10.0485 10.0485
V0[K] 1.208018 1.150485
ρ0[a0] 8.4853 8.4853
W0[K] 3.011702 3.014051
E4[K] 0.536 0.536 0.440 0.440
E5[K] 1.251 1.266 1.076 1.076
E6[K] 2.216 2.232 1.946 1.963
E10/10[K] 0.792(2) 0.831(2) 0.714(2) 0.746(2)
E20/20[K] 1.525(2) 1.627(2) 1.389(2) 1.491(2)
E40/40[K] 2.374(2) 2.482(2) 2.170(2) 2.308(2)
E70/70[K] 3.07(1) 3.14(1) 2.80(1) 2.92(1)
E112/112[K] 3.58(2) 3.63(2) 3.30(2) 3.40(2)
EN/N(∞)[K] 7.2(3)∗ 7.14(2) 6.8(3)∗ 6.72(2)
HFD-B [K] 7.33(2) 6.73(2)

• the ρ0 parameter works as a non-universal parameter to fix the correct amount of repulsion
needed to describe the curve EN/N
• It takes into account non-universal physics
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The three-nucleon system
The two-nucleon states Jπ = 0+ and 1+ belongs to the universal
window.
The 0+ state is an s-wave state
The 1+ has a dominant s-wave component, ≈ 95%

The lightest nuclei, 2H, 3H, 3He and 4He have large probabilities to
be in L = 0, we expect to observe universal properties.
Important questions to be clarified are the lack of excited states in
the three- and four-nucleon systems.
The doublet neutron-deuteron scattering length, 2and ≈ 0.65 fm is
very small value compared to the triplet neutron-proton scattering
length anp ≈ 5.2 fm.
Data for low energy neutron-deuteron scattering reveal the
presence of a triton virtual state.
All these properties can be traced back to the position of the
nuclear system inside the universal window.
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The three-nucleon system

• The study of the universal window in the case of three nucleons has
to consider the two different values of the singlet and triplet scattering
lengths, as and at .
• the nuclear plane is defined when the ratio as/at is close to the
experimental value, as/at = −4.38
• To characterize the universal window we construct a spin-dependent
Gaussian potential with different strengths and ranges in the
spin-isospin channels S,T = 0,1 and 1,0

V (r) = V0e−r2/r2
0P0 + V1e−r2/r2

1P1

• P0 and P1 are projectors on the S,T = 0,1 and S,T = 1,0 channels
• In the following we study the spectrum of the three-nucleon
Jπ = 1/2+ state considering r0 = r1, for which choice, at the unitary
limit, the spectrum coincides with the boson case.
• V0 and V1 are varied maintaining as/at = −4.38
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The nuclear plane
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The universal window for A = 2, 3, 4
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The universal window for A = 2, 3
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Gaussian characterization for A ≤ 6
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Gaussian characterization for A ≤ 6

a1(fm) E2(MeV) E3(MeV) E∗
3 (MeV) E4(MeV) E∗

4 (MeV) 6He(MeV) 6Li(MeV)
5.4802 -2.2255 -10.2455 - -39.843 -11.19 -41.60 -46.74
5.5980 -2.1098 -10.0056 - -39.221 -10.93 -40.87 -45.82
6.0683 -1.7270 -9.1903 - -37.093 -10.01 -38.36 -42.71
6.6607 -1.3762 -8.4054 - -35.017 -9.14 -35.95 -39.67
7.4310 -1.0593 -7.6526 - -32.997 -8.31 -33.58 -36.77
8.4756 -0.77842 -6.9333 - -31.035 -7.52 -31.31 -33.95
9.9750 -0.53599 -6.2493 - -29.135 -6.78 - -31.23
12.3136 -0.33466 -5.6023 - -27.300 -6.08 - -28.62
16.4715 -0.17736 -4.9945 - -25.536 -5.43 - -26.17
20.0638 -0.11633 -4.7058 -0.1168 -24.682 -5.13 - -24.96
22.6041 -0.09038 -4.5654 -0.0920 -24.262 -4.98 - -24.41
25.9589 -0.06756 -4.4278 -0.0705 -23.847 -4.83 - -
30.5953 -0.04794 -4.2927 -0.0530 -23.437 -4.69 - -
37.4216 -0.03158 -4.1605 -0.0385 -23.032 -4.55 - -
48.4699 -0.01855 -4.0311 -0.0270 -22.633 -4.42 - -
69.4131 -0.00891 -3.9044 -0.0182 -22.238 -4.28 - -

124.3314 -0.00273 -3.7807 -0.0119 -21.850 -4.15 - -
∞ 0 -3.6322 -0.0068 -21.378 -4.00 - -
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Gaussian characterization for A ≤ 6

The energies are described only quantitatively
Based on EFT at LO (and the results on bosons), we introduce a
three-body force

W (ρ) = W0 e−(r2
12+r2

13+r2
23)/ρ2

3

with the strength and range fixed to describe E3 and E4
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Gaussian characterization for A >> 3
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From few to many bodies
Inside the universal window we observe universal behavior
encoded in two quantities: the dimer energy and the scattering
length
To describe these two quantities we contruct a two-parameter
potential used to characterize the universal window
For more than two bodies this potential is able to capture many
dynamical properties
Increasing the number of particles non-universal behavior could
appear
It can be taken into account by fixing with detail the range of the
three-body repulsion
This parameter can be fixed in the few-body sector to describe for
example E3 and E4
The complete potential is parametrized by four low energy
observables
This implies a strong correlation between the few-body and
many-body dynamics
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The 2 + 1 scattering length
In the two-body system the scattering length and the dimer energy
are stricted correlated inside the universal window:
kd = 1/a + reff k2

d/2
The atom-dimer scattering length is stricted correlated to the
discrete spectrum
The functional form in zero-range theory was derived by Efimov

aAD/aB = d1 + d2 tan[s0 ln(κ∗aB) + d3]

d1, d2 and d3 are universal numbers
κ∗ is the three-body parameter belonging to one of the three-body
energy branches
In the case of finite-range interactions

aAD/aB = d1 + d2 tan[s0 ln(κ
(n)
∗ r0(aB/r0) + Γ

(n)
3 ) + d3]

κ
(n)
∗ r0 = γ

(n)
3 , is used as the driving term

Γ
(n)
3 is a finite-range three-body parameter
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The 2 + 1 scattering length

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
r
0
/a

B

-5

-4

-3

-2

-1

0

1

2

3

4

5

a A
D

/a
B

Putting numbers: At r0/aB = 0.0637→ aAD/aB = 1.19
Using the LM2M2 value, aB = 182.22 a0 → aAD = 217 a0
The LM2M2 value for this quantity of 218.4 a0!
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The doublet nd scattering length
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The doublet nd scattering length
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Putting numbers: At r0/aB = 0.457→ and/aB = 0.08
Using the deuteron value, aB = 4.3 fm→ and = 0.4 fm
The experimental value for this quantity of 0.65 fm!
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