Applications to few- and many-body systems
Zero- and finite-range description of two-particles

- In the zero-range theory
 \[k \cot \delta = -1/a \rightarrow S(k) = -\frac{k + i/a}{k - i/a} \]

- In the finite-range theory
 \[k \cot \delta = -1/a + r_{\text{eff}} k^2/2 \rightarrow S(k) = \frac{k + i/a_B k + i/r_B}{k - i/a_B k - i/r_B} \]

 with \(r_B = a - a_B \)

- In the finite-range theory a two-parameter potential is used to reproduce the two parameters of the theory → correct pole structure of the S-matrix
Zero- and finite-range description of two-particles

- In the zero-range theory the extension to more particles goes through the solution of the zero-range FY equations (for three particles the STM equation)
 - Efimov spectrum
 - Scale invariance
 - Two-level structure for $N > 3$

- In the finite-range theory the two-parameter potential used to reproduce the low energy S-matrix behavior is taken to solve the Schroedinger equation for more than two particles

- In the two-body system we saw how to make things independent of the choice of the two-parameter potential → characterization of the universal window

- What happens in the three- and more particle systems?
- Could we introduce a finite-range parameter? how?
- And how this description (universal regime) deviates as N increases (non-universal regime)
Gaussian characterization of the universal window for two particles

We characterize the universal window with a Gaussian potential:

\[V(r) = V_0 e^{-r^2/r_0^2} \]

where \(r \) is the interparticle distance, while the strength \(V_0 \) and range \(r_0 \) are parameters useful to explore the low-energy dynamics associated with the existence of one (bound or virtual) state close to threshold.

For bound states, the wave function is obtained by solving the \(s \)-wave Schrödinger equation

\[
\left(\frac{\partial^2}{\partial z^2} - \frac{mr_0^2 V_0}{\hbar^2} e^{-z^2} - \frac{r_0^2}{a_B^2} \right) \phi_B(z) = 0
\]

where \(z = r/r_0 \) and \(\phi_B(z) \) is the reduced wave function and

\[E = -\frac{\hbar^2}{ma_B^2} \]
Gaussian characterization of the universal window

For zero-energy the wave function, \(\phi_0 \), is obtained by solving

\[
\left(\frac{\partial^2}{\partial z^2} - \frac{mr_0^2 V_0}{\hbar^2} e^{-z^2} \right) \phi_0(z) = 0
\]

with \(\phi_0(z \to \infty) \to 1 - zr_0/a \), from which the scattering length \(a \) is extracted and the effective range is

\[
r_{\text{eff}} = 2r_0 \int_0^{\infty} \left[(1 - zr_0/a)^2 - \phi_0^2 \right] dz
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(r_{\text{eff}}/r_0)</th>
<th>(V_0/(\hbar^2/mr_0^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.43522</td>
<td>2.6840</td>
</tr>
<tr>
<td>1</td>
<td>2.41303</td>
<td>17.7957</td>
</tr>
<tr>
<td>2</td>
<td>2.89034</td>
<td>45.5735</td>
</tr>
<tr>
<td>3</td>
<td>3.20006</td>
<td>85.9632</td>
</tr>
</tbody>
</table>
RG trajectory

Inside the universal limit, the strength parameter $\tilde{C}_\lambda = \frac{\sqrt{\pi}}{2} \frac{m r_0^2}{\hbar^2} V_0$ can be expanded in powers of the small parameters r_0/a as

$$\tilde{C}_\lambda = \frac{\sqrt{\pi}}{2} \frac{m r_0^2}{\hbar^2} V_0 = C_\infty \left(1 + \alpha_1 \frac{r_0}{a} + \alpha_2 \left(\frac{r_0}{a} \right)^2 + \ldots \right)$$ \hspace{1cm} (1)

The pure number $C_\infty = 2.379$ is the same for all gaussians. The above equation maps the renormalization group (RG) trajectories as the interaction approaches the scaling limit.
Gaussian characterization

-0.4 -0.2 0 0.2 0.4
\[r_{\text{eff}} / a \]

-0.4
-0.2
0
0.2
0.4
0.6
\[r_{\text{eff}} / a_B \]

Gaussian

\[\text{deuteron} \]

\[\text{helium dimer} \]

\[\text{nn virtual state} \]

Applications

4-8 October 2021

(4rd lesson)
Gaussian characterization of the universal window for three bosons

- $r_0/\alpha_B^{1/2}$
- $-r_0 \kappa_3^{(n)}$
 - $-r_0 \kappa_3^{(0)} = -0.4883$
 - $-r_0 \kappa_3^{(1)} = -0.02125$
 - $-r_0 \kappa_3^{(2)} = -0.0009362$
- $a_0^{(0)} = -4.37 r_0$
- $a_0^{(1)} = -74.0 r_0$
- $a_0^{(2)} = -1613 r_0$
Notable points

The values at the unitary limit:

\[-r_0 \kappa_*^{(0)} = -0.4883\]
\[-r_0 \kappa_*^{(1)} = -0.02125,\]
\[-r_0 \kappa_*^{(2)} = -0.0009362,\]

Values at \(\kappa_3^{(n)} = 0\)

\[-a_0^{(0)} = -4.37r_0\]
\[-a_1^{(1)} = -74.0r_0\]
\[-a_2^{(2)} = -1613r_0\]

and the almost model independent quantities:

\[\kappa_*^{(0)} a_0^{(0)} = -2.14\] for van der Waals systems \(\approx -2.2\)
\[\kappa_*^{(1)} a_1^{(1)} = -1.57\]
\[\kappa_*^{(2)} a_2^{(2)} = -1.51\] the zero-range theory \(\approx -1.507\)
van der Waals universality

Using the LM2M2 helium trimers: $E_3^{(0)} = 126.4 \text{ mK}$ and $E_3^{(1)} = 2.27 \text{ mK}$ and the dimer: $E_2 = 1.303 \text{ mK}$, the position of these data on the plot can be located through the angle θ defined as $E_3^{(n)}/E_2 = \tan^2 \theta$. The axis value is $r_0/a_B = 0.061$ corresponding to a Gaussian range $r_0^{(0)} = 11.15 a_0$ with which a Gaussian potential reproduces the dimer and ground state trimer energies. From that value, the three-body parameters of the helium trimer, ground and excited states, can be estimated

$$E_*^{(0)} = \frac{\hbar^2}{m} \left[\frac{\gamma_0}{r_0^{(0)}} \right]^2 = 83.1 \text{ mK} \rightarrow 84 \text{ mK} \text{ for the LM2M2 potential}$$

$$E_*^{(1)} = \frac{\hbar^2}{m} \left[\frac{\gamma_1}{r_0^{(0)}} \right]^2 = 0.157 \text{ mK} \rightarrow 0.157 \text{ mK} \text{ for the LM2M2 potential}$$

At the three-atom continuum the characteristic range predicts the value $a^{(0)}_\rightarrow = -48.7 a_0$. The Gaussian trajectory predicts

$$a^{(0)}_\rightarrow /\tilde{r}_{vdW} \approx -9.6$$

in close agreement with the universal value observed in van der Waals species.
Efimov radial law

\[\frac{E_3^{(n)}}{E_2} = \tan^2 \xi \]

\[-\frac{\hbar^2}{m} H^2 = E_3^{(n)} + E_2 = e^{-2(n-n_*)\pi/s_0} e^{\Delta(\xi)/s_0} E_* \]
Efimov radial law

where $\Delta(\xi)$ is the zero-range universal function.

- The same for all levels

![Graph showing the Efimov radial law](image_url)
Finite-range Efimov radial law

\[\frac{E_3^{(n)}}{E_2} = \tan^2 \xi \]

\[-\frac{\hbar^2}{m} H^2 = E_3^{(n)} + E_2 = e^{\Delta_3^{(n)}(\xi)/s_0} E_*^{(n)} \]

\[(r_0/a_B)^{1/2} \]

\[-[r_0 \kappa_3^{(n)}]^{1/4} \]

\[\begin{align*}
 -r_0 \kappa_3^{(0)} &= -0.4883 \\
 -r_0 \kappa_3^{(1)} &= -0.02125 \\
 -r_0 \kappa_3^{(2)} &= -0.0009362
\end{align*} \]

\[\begin{align*}
 a_0 &= -4.37 r_0 \\
 a_1 &= -74.0 r_0 \\
 a_2 &= -1613 r_0
\end{align*} \]
Finite-range Efimov radial law

where $\Delta_n^3(\xi)$ is the finite-range level function.

- $\Delta_n^3(\xi) = s_0 \log \frac{E_3^{(n)} + E_2}{E^{(n)}_*} \to \Delta(\xi)$ for $n \geq 2$
Finite-range Efimov radial law

The results for a Gaussian potential of range r_0 with variable strength can be summarized in the following equations

\[a_B \kappa_3^{(n)} = \tan \xi \]

\[r_0 \kappa_3^{(n)} = \gamma_3^{(n)} e^{\Delta_3^{(n)}(\xi)/2s_0} \sin \xi \]

with $\gamma_3^{(n)} = r_0 \kappa_*^{(n)}$ and $E_3^{(n)} = \hbar^2 [\kappa_3^{(n)}]^2 / m$.

- The pure numbers $r_0 \kappa_*^{(n)} = \gamma_3^{(n)}$, and $\Delta_3^{(n)}$ are the same for all Gaussian potentials.

The finite-range equation can be related to the zero-range equation as

\[r_0 \kappa_3^{(n)} = \gamma_3^{(n)} e^{\Delta(\xi)/2s_0} \sin \xi \left(1 + \frac{r_0 \Gamma_3^{(n)}}{\gamma_3^{(n)} a_B} \right) \]

with $\Gamma_3^{(n)}$ the finite-range parameter of level n, $\Gamma_3^{(n)} \rightarrow 0$ as $n > 2$.
Gaussian characterization of the window for $N, A > 3$

- The Gaussian characterization of the universal window can be extended to describe systems composed by more than three particles.
- The DSI, which emerges in the three-body sector and gives rise to the Efimov spectrum, strongly constrains the $N > 3$ (bosons) or $A > 3$ (nucleons) energy spectrum.
- For equal bosons, where the spatial wave function is symmetric, DSI can be observed well beyond three particles.
- In the case of A nucleons, the spatial-symmetric wave function is dominant only up to four particles.
- Deviations from the bosonic-Efimov scenario appear for the $A > 4$ levels.
- It is interesting to explore how the energy levels emerge from the unitary limit.
Gaussian characterization for $N > 3$

- Defining the angle: $a_B \kappa_N^{(m)} = \tan \xi$

 the spectrum is determined by the equation

$$r_0 \kappa_N^{(m)} = \gamma_N^{(m)} e^{\Delta_N^{(m)}(\xi)/2s_0 \sin \xi}$$

with $m = 0$ being the N-body ground state and $m = 1$ the excited state.

- The pure numbers $\gamma_N^{(m)} = r_0 \kappa_N^{(m)}$, determining the energies at the unitary limit, $E_{*,N}^{(m)}$, are characteristic of every Gaussian potential.

- The energy of the level m is $E_N^{(m)} = \hbar^2 [\kappa_N^{(m)}]^2 / m$ and $\Delta_N^{(m)}(\theta)$ is the Gaussian level function for N bosons in the states $m = 0, 1$:

$$\Delta_N^{(m)}(\theta) = s_0 \log \frac{E_N^{(m)} + E_2}{E_{*,N}^{(m)}}$$
Gaussian characterization for $N \leq 6$

Applications

4-8 October 2021
Gaussian characterization for $N \leq 6$

The N bosons spectrum can be put in the following way:

$$\kappa_N^{(m)} a_B = \tan \xi, \quad \kappa_{*,N}^{(m)} a_B + \Gamma_N^{(m)} = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$
Gaussian characterization of the universal window

- The gaussian characterization for three bosons does not show the Thomas collapse.
- It introduces a finite-range parameter $\Gamma_3^{(n)}$ and for $N > 3$ $\Gamma_N^{(m)}$, with $m = 0, 1$.
- For $N = 3$ the gaussian characterization captures important properties observed in experiments as the van der Waals universality.
- It is able to describe (theoreticaly) movements of the helium trimer along the window.
- Can this description be extended for general $N > 3$?
- We can expect a break down of the universal plus finite-range description as $N >> 3$.
- What emerges is a correlation between few- and many-body dynamics.
Universal window for N bosons

<table>
<thead>
<tr>
<th>Potential</th>
<th>E_2(mK)</th>
<th>E_3(mK)</th>
<th>E_4(mK)</th>
<th>$r_0^{(3)}(a_0)$</th>
<th>$r_0^{(4)}(a_0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFD-HE2</td>
<td>0.8301</td>
<td>117.2</td>
<td>535.6</td>
<td>11.146</td>
<td>11.840</td>
</tr>
<tr>
<td>LM2M2</td>
<td>1.3094</td>
<td>126.5</td>
<td>559.2</td>
<td>11.150</td>
<td>11.853</td>
</tr>
<tr>
<td>HFD-B3-FCH</td>
<td>1.4475</td>
<td>129.0</td>
<td>566.1</td>
<td>11.148</td>
<td>11.853</td>
</tr>
<tr>
<td>CCSAPT</td>
<td>1.5643</td>
<td>131.0</td>
<td>571.7</td>
<td>11.149</td>
<td>11.851</td>
</tr>
<tr>
<td>PCKLJS</td>
<td>1.6154</td>
<td>131.8</td>
<td>573.9</td>
<td>11.148</td>
<td>11.852</td>
</tr>
<tr>
<td>HFD-B</td>
<td>1.6921</td>
<td>133.1</td>
<td>577.3</td>
<td>11.149</td>
<td>11.854</td>
</tr>
<tr>
<td>SAPT96</td>
<td>1.7443</td>
<td>134.0</td>
<td>580.0</td>
<td>11.147</td>
<td>11.850</td>
</tr>
</tbody>
</table>

- $r_0^{(3)}(a_0) = -0.4883$
- $r_0^{(4)}(a_0) = -1.1847$
Universal window for N bosons

• The different trimer predictions are on top of the curve predicted by the following potential:

 • for $N = 3$

 $$V^{(3)}(r_{ij}) = V_0^{(3)} e^{-r_{ij}^2/(r_0^{(3)})^2}$$

 this potential, with variable strength describes the motion along the universal particles for the helium dimer and trimer

 • for $N = 4$

 $$V^{(4)}(r_{ij}) = V_0^{(4)} e^{-r_{ij}^2/(r_0^{(4)})^2}$$

 this potential, with variable strength describes the motion along the universal particles for the helium dimer and tetramer

• Up to which number of particles this behavior will hold?
Universal window for N bosons

This behavior degraded between 10 to 20 bosons → a non universal behavior appears!
From Universal to non-universal behavior

- The gaussian characterization has been done using an attractive gaussian interaction
- As $N \to \infty$ the ground state energy per particle $E_N/N \to \infty$
- To stabilize the system a repulsion is needed
- Based on the results of EFT at LO the following potential can be studied

$$V = V_0 \sum_{i<j} e^{-r_{ij}^2/r_0^2} + W_0 \sum_{i<j<k} e^{-2\rho_{ijk}^2/\rho_0^2}$$

with $\rho_{ijk}^2 = (2/3)(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)$
- r_0 and V_0 are fixed to reproduce the two-body physics: dimer energy and scattering length
- W_0 could be fixed to reproduce the trimer energy
- The range of the three-body force ρ_0 has to be analyzed
From Universal to non-universal behavior

![Graph showing energy per particle vs. particle number for different systems, with annotations for SGP and HFDHE2 models.]
From Universal to non-universal behavior

<table>
<thead>
<tr>
<th></th>
<th>physical point</th>
<th>unitary point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SGP</td>
<td>HFD-HE2</td>
</tr>
<tr>
<td>$r_0 [a_0]$</td>
<td>10.0485</td>
<td>10.0485</td>
</tr>
<tr>
<td>$V_0 [K]$</td>
<td>1.208018</td>
<td>1.150485</td>
</tr>
<tr>
<td>$\rho_0 [a_0]$</td>
<td>8.4853</td>
<td>8.4853</td>
</tr>
<tr>
<td>$W_0 [K]$</td>
<td>3.011702</td>
<td>3.014051</td>
</tr>
<tr>
<td>$E_4 [K]$</td>
<td>0.536</td>
<td>0.536</td>
</tr>
<tr>
<td>$E_5 [K]$</td>
<td>1.251</td>
<td>1.266</td>
</tr>
<tr>
<td>$E_6 [K]$</td>
<td>2.216</td>
<td>2.232</td>
</tr>
<tr>
<td>$E_{10}/10 [K]$</td>
<td>0.792(2)</td>
<td>0.831(2)</td>
</tr>
<tr>
<td>$E_{20}/20 [K]$</td>
<td>1.525(2)</td>
<td>1.627(2)</td>
</tr>
<tr>
<td>$E_{40}/40 [K]$</td>
<td>2.374(2)</td>
<td>2.482(2)</td>
</tr>
<tr>
<td>$E_{70}/70 [K]$</td>
<td>3.07(1)</td>
<td>3.14(1)</td>
</tr>
<tr>
<td>$E_{112}/112 [K]$</td>
<td>3.58(2)</td>
<td>3.63(2)</td>
</tr>
<tr>
<td>$E_N/N(\infty) [K]$</td>
<td>7.2(3)*</td>
<td>7.14(2)</td>
</tr>
<tr>
<td>HFD-B [K]</td>
<td>7.33(2)</td>
<td></td>
</tr>
</tbody>
</table>

- the ρ_0 parameter works as a non-universal parameter to fix the correct amount of repulsion needed to describe the curve E_N/N
- It takes into account non-universal physics
The three-nucleon system

- The two-nucleon states $J^{\pi} = 0^+$ and 1^+ belongs to the universal window.
- The 0^+ state is an s-wave state
- The 1^+ has a dominant s-wave component, $\approx 95\%$
- The lightest nuclei, 2H, 3H, 3He and 4He have large probabilities to be in $L = 0$, we expect to observe universal properties.
- Important questions to be clarified are the lack of excited states in the three- and four-nucleon systems.
- The doublet neutron-deuteron scattering length, $^2a_{nd} \approx 0.65$ fm is very small value compared to the triplet neutron-proton scattering length $a_{np} \approx 5.2$ fm.
- Data for low energy neutron-deuteron scattering reveal the presence of a triton virtual state.
- All these properties can be traced back to the position of the nuclear system inside the universal window.
The three-nucleon system

- The study of the universal window in the case of three nucleons has to consider the two different values of the singlet and triplet scattering lengths, \(a_s \) and \(a_t \).
- The nuclear plane is defined when the ratio \(a_s/a_t \) is close to the experimental value, \(a_s/a_t = -4.38 \).
- To characterize the universal window we construct a spin-dependent Gaussian potential with different strengths and ranges in the spin-isospin channels \(S, T = 0, 1 \) and \(1, 0 \):

\[
V(r) = V_0 e^{-r^2/r_0^2} P_0 + V_1 e^{-r^2/r_1^2} P_1
\]

- \(P_0 \) and \(P_1 \) are projectors on the \(S, T = 0, 1 \) and \(S, T = 1, 0 \) channels.
- In the following we study the spectrum of the three-nucleon \(J^\pi = 1/2^+ \) state considering \(r_0 = r_1 \), for which choice, at the unitary limit, the spectrum coincides with the boson case.
- \(V_0 \) and \(V_1 \) are varied maintaining \(a_s/a_t = -4.38 \).
The nuclear plane

- **Nuclear plane** $a_0/a_1 = -4.38$
- **Boson plane** $a_0/a_1 = 1$
- **Plane with** $1/a_1 = 0$
- **Plane with** $1/a_0 = 0$
The universal window for $A = 2, 3, 4$
The universal window for $A = 2, 3$

Two-body system
Three-boson system (ground state)
Three-boson system (excited state)
Three-fermion system (ground state)
Three-fermion system (excited state)

$K_*/22.9$
$a_0 = -7.2$ fm
$a_1 = -127$ fm
$a_1^* = 20$ fm
$a_1 = 5.4$ fm

$E_2 = -2.22$ MeV
$E_3 = -10.2$ MeV
$E_3 = -21.1$ MeV
$a_0/a_1 = -4.3$
$a_0/a_1 = 1$
Gaussian characterization for $A \leq 6$
Gaussian characterization for $A \leq 6$

<table>
<thead>
<tr>
<th>a_1(fm)</th>
<th>E_2(MeV)</th>
<th>E_3(MeV)</th>
<th>E_3^* (MeV)</th>
<th>E_4(MeV)</th>
<th>E_4^* (MeV)</th>
<th>6He(MeV)</th>
<th>6Li(MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5980</td>
<td>-2.1098</td>
<td>-10.0056</td>
<td>-</td>
<td>-39.221</td>
<td>-10.93</td>
<td>-40.87</td>
<td>-45.82</td>
</tr>
<tr>
<td>6.0683</td>
<td>-1.7270</td>
<td>-9.1903</td>
<td>-</td>
<td>-37.093</td>
<td>-10.01</td>
<td>-38.36</td>
<td>-42.71</td>
</tr>
<tr>
<td>7.4310</td>
<td>-1.0593</td>
<td>-7.6526</td>
<td>-</td>
<td>-32.997</td>
<td>-8.31</td>
<td>-33.58</td>
<td>-36.77</td>
</tr>
<tr>
<td>8.4756</td>
<td>-0.77842</td>
<td>-6.9333</td>
<td>-</td>
<td>-31.035</td>
<td>-7.52</td>
<td>-31.31</td>
<td>-33.95</td>
</tr>
<tr>
<td>9.9750</td>
<td>-0.53599</td>
<td>-6.2493</td>
<td>-</td>
<td>-29.135</td>
<td>-6.78</td>
<td>-</td>
<td>-31.23</td>
</tr>
<tr>
<td>12.3136</td>
<td>-0.33466</td>
<td>-5.6023</td>
<td>-</td>
<td>-27.300</td>
<td>-6.08</td>
<td>-</td>
<td>-28.62</td>
</tr>
<tr>
<td>16.4715</td>
<td>-0.17736</td>
<td>-4.9945</td>
<td>-</td>
<td>-25.536</td>
<td>-5.43</td>
<td>-</td>
<td>-26.17</td>
</tr>
<tr>
<td>20.0638</td>
<td>-0.11633</td>
<td>-4.7058</td>
<td>-0.1168</td>
<td>-24.682</td>
<td>-5.13</td>
<td>-</td>
<td>-24.96</td>
</tr>
<tr>
<td>22.6041</td>
<td>-0.09038</td>
<td>-4.5654</td>
<td>-0.0920</td>
<td>-24.262</td>
<td>-4.98</td>
<td>-</td>
<td>-24.41</td>
</tr>
<tr>
<td>25.9589</td>
<td>-0.06756</td>
<td>-4.4278</td>
<td>-0.0705</td>
<td>-23.847</td>
<td>-4.83</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>30.5953</td>
<td>-0.04794</td>
<td>-4.2927</td>
<td>-0.0530</td>
<td>-23.437</td>
<td>-4.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.4216</td>
<td>-0.03158</td>
<td>-4.1605</td>
<td>-0.0385</td>
<td>-23.032</td>
<td>-4.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>48.4699</td>
<td>-0.01855</td>
<td>-4.0311</td>
<td>-0.0270</td>
<td>-22.633</td>
<td>-4.42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>69.4131</td>
<td>-0.00891</td>
<td>-3.9044</td>
<td>-0.0182</td>
<td>-22.238</td>
<td>-4.28</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>124.3314</td>
<td>-0.00273</td>
<td>-3.7807</td>
<td>-0.0119</td>
<td>-21.850</td>
<td>-4.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>∞</td>
<td>0</td>
<td>-3.6322</td>
<td>-0.0068</td>
<td>-21.378</td>
<td>-4.00</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Gaussian characterization for $A \leq 6$

- The energies are described only quantitatively.
- Based on EFT at LO (and the results on bosons), we introduce a three-body force

$$W(ρ) = W_0 \, e^{-\left(\frac{r_{12}^2 + r_{13}^2 + r_{23}^2}{ρ_3^2}\right)}$$

- with the strength and range fixed to describe E_3 and E_4.

![Graph showing the energy levels for different isotopes]
Gaussian characterization for $A \gg 3$
From few to many bodies

- Inside the universal window we observe universal behavior encoded in two quantities: the dimer energy and the scattering length.
- To describe these two quantities we construct a two-parameter potential used to characterize the universal window.
- For more than two bodies this potential is able to capture many dynamical properties.
- Increasing the number of particles non-universal behavior could appear.
- It can be taken into account by fixing with detail the range of the three-body repulsion.
- This parameter can be fixed in the few-body sector to describe for example E_3 and E_4.
- The complete potential is parametrized by four low energy observables.
- This implies a strong correlation between the few-body and many-body dynamics.
The 2 + 1 scattering length

- In the two-body system the scattering length and the dimer energy are strictly correlated inside the universal window:
 \[k_d = 1/a + r_{\text{eff}} k_d^2 / 2 \]
- The atom-dimer scattering length is strictly correlated to the discrete spectrum
- The functional form in zero-range theory was derived by Efimov
 \[a_{AD}/a_B = d_1 + d_2 \tan [s_0 \ln(\kappa_* a_B) + d_3] \]
- \(d_1, d_2 \) and \(d_3 \) are universal numbers
- \(\kappa_* \) is the three-body parameter belonging to one of the three-body energy branches
- In the case of finite-range interactions
 \[a_{AD}/a_B = d_1 + d_2 \tan [s_0 \ln(\kappa_*^{(n)} r_0(a_B/r_0) + \Gamma_3^{(n)}) + d_3] \]
- \(\kappa_*^{(n)} r_0 = \gamma_3^{(n)} \), is used as the driving term
- \(\Gamma_3^{(n)} \) is a finite-range three-body parameter
The $2 + 1$ scattering length

Putting numbers: At $r_0/a_B = 0.0637 \rightarrow a_{AD}/a_B = 1.19$

Using the LM2M2 value, $a_B = 182.22 \, a_0 \rightarrow a_{AD} = 217 \, a_0$

The LM2M2 value for this quantity of $218.4 \, a_0$!
The doublet nd scattering length

![Graph showing the scattering length for nd as a function of r_0/a_B. The graph indicates a rapid increase at small r_0/a_B values, followed by a slower approach to a constant value.](image-url)
The doublet nd scattering length

Putting numbers: At $r_0/a_B = 0.457 \rightarrow a_{nd}/a_B = 0.08$
Using the deuteron value, $a_B = 4.3 \text{ fm} \rightarrow a_{nd} = 0.4 \text{ fm}$
The experimental value for this quantity of 0.65 fm!