Applications to few- and many-body systems

(Ard	lesson)
(4/0	1633011)

Zero- and finite-range description of two-particles

• In the zero-range theory

$$k \cot \delta = -1/a \rightarrow S(k) = -\frac{k+i/a}{k-i/a}$$

In the finite-range theory

$$k\cot \delta = -1/a + r_{\text{eff}}k^2/2 \rightarrow S(k) = \frac{k + i/a_B}{k - i/a_B}\frac{k + i/r_B}{k - i/r_B}$$

with $r_B = a - a_B$

 In the finite-range theory a two-parameter potential is used to reproduce the two parameters of the theory → correct pole structure of the S-matrix

Zero- and finite-range description of two-particles

- In the zero-range theory the extension to more particles goes through the solution of the zero-range FY equations (for three particles the STM equation)
 - Efimov spectrum
 - Scale invariance
 - Two-level structure for N > 3
- In the finite-range theory the two-parameter potential used to reproduce the low energy *S*-matrix behavior is taken to solve the Schroedinger equation for more than two particles
- In the two-body system we saw how to make things independent of the choice of the two-parameter potential → charaterization of the universal window
- What happens in the three- and more particle systems?
- Could we introduce a finite-range parameter? how?
- And how this description (universal regime) deviates as *N* increases (non-universal regime)

(4rd lesson)

Gaussian characterization of the universal window for two particles

We characterize the universal window with a Gaussian potential:

$$V(r) = V_0 e^{-r^2/r_0^2}$$

where *r* is the interparticle distance, while the strength V_0 and range r_0 are parameters useful to explore the low-energy dynamics associated with the existence of one (bound or virtual) state close to threshold. For bound states, the wave function is obtained by solving the *s*-wave Schrödinger equation

$$\left(\frac{\partial^2}{\partial z^2} - \frac{mr_0^2 V_0}{\hbar^2} e^{-z^2} - \frac{r_0^2}{a_B^2}\right) \phi_B(z) = 0$$

where $z = r/r_0$ and $\phi_B(z)$ is the reduced wave function and

$$E = -rac{\hbar^2}{ma_B^2}$$

Gaussian characterization of the universal window

For zero-energy the wave function, ϕ_0 , is obtained by solving

$$\left(\frac{\partial^2}{\partial z^2} - \frac{mr_0^2 V_0}{\hbar^2} e^{-z^2}\right) \phi_0(z) = 0$$

with $\phi_0(z \to \infty) \to 1 - zr_0/a$, from which the scattering length *a* is extracted and the effective range is

$$r_{\rm eff} = 2r_0 \int_0^\infty \left[(1 - zr_0/a)^2 - \phi_0^2 \right] dz$$

$$\begin{array}{c|cccc} n & r_{\rm eff}/r_0 & V_0/(\hbar^2/mr_0^2) \\ \hline 0 & 1.43522 & 2.6840 \\ 1 & 2.41303 & 17.7957 \\ 2 & 2.89034 & 45.5735 \\ 3 & 3.20006 & 85.9632 \\ \end{array}$$

lesson)

RG trajectory

Inside the universal limit, the strength parameter $\tilde{C}_{\lambda} = \frac{\sqrt{\pi}}{2} \frac{m_0^2}{\hbar^2} V_0$ can be expanded in powers of the small parameters r_0/a as

$$\widetilde{C}_{\lambda} = \frac{\sqrt{\pi}}{2} \frac{mr_0^2}{\hbar^2} V_0 = C_{\infty} \left(1 + \alpha_1 \frac{r_0}{a} + \alpha_2 (\frac{r_0}{a})^2 + \dots \right)$$
(1)

The pure number $C_{\infty} = 2.379$ is the same for all gaussians. The above equation maps the renormalization group (RG) trajectories as the interaction approaches the scaling limit.

Gaussian characterization

э

Gaussian characterization of the universal window for three bosons

Notable points

The values at the unitary limit:

$$\begin{array}{ll} -r_{0}\kappa_{*}^{(0)} = -0.4883 & \kappa_{*}^{(n)}/\kappa_{*}^{(n+1)} & e^{\pi/s_{0}} \\ -r_{0}\kappa_{*}^{(1)} = -0.02125, & 22.979 \\ -r_{0}\kappa_{*}^{(2)} = -0.0009362, & 22.696 & \rightarrow 22.694 \\ \end{array}$$

$$\begin{array}{ll} \text{Values at } \kappa_{3}^{(n)} = 0 & & \\ -a_{-}^{(0)} = -4.37r_{0} & a_{-}^{(n+1)}/a_{-}^{(n)} & e^{\pi/s_{0}} \\ -a_{-}^{(1)} = -74.0r_{0} & 19.93 \\ -a_{-}^{(2)} = -1613r_{0} & 21.80 & \rightarrow 22.7 \end{array}$$

and the almost model independent quantities:

$$\begin{split} \kappa_*^{(0)} a_-^{(0)} &= -2.14 & \text{for van der Waals systems} \approx -2.2 \\ \kappa_*^{(1)} a_-^{(1)} &= -1.57 & \\ \kappa_*^{(2)} a_-^{(2)} &= -1.51 & \text{the zero-range theory} \approx -1.507 \end{split}$$

4 3 5 4 3 5 5

van der Waals universality

Using the LM2M2 helium trimers: $E_3^{(0)} = 126.4$ mK and $E_3^{(1)} = 2.27$ mK and the dimer: $E_2 = 1.303$ mK, the position of these data on the plot can be located through the angle θ defined as $E_3^{(n)}/E_2 = \tan^2 \theta$. The axis value is $r_0/a_B = 0.061$ corresponding to a Gaussian range $r_0^{(0)} = 11.15 a_0$ with which a Gaussian potential reproduces the dimer and ground state trimer energies. From that value, the three-body parameters of the helium trimer, ground and excited states, can be estimated

 $E_*^{(0)} = \frac{\hbar^2}{m} \left[\frac{\gamma_0}{r_0^{(0)}} \right]^2 = 83.1 \text{ mK} \rightarrow 84 \text{ mK} \text{ for the LM2M2 potential}$ $E_*^{(1)} = \frac{\hbar^2}{m} \left[\frac{\gamma_1}{r_0^{(0)}} \right]^2 = 0.157 \text{ mK} \rightarrow 0.157 \text{ mK} \text{ for the LM2M2 potential}$ At the three-atom continuum the characteristic range predicts the value $a_-^{(0)} = -48.7 a_0$. The Gaussian trajectory predicts $a_-^{(0)}/\tilde{r}_{vdW} \approx -9.6$, in close agreement with the universal value observed in van der Waals species.

(4rd lesson)

Efimov radial law

Efimov radial law

where $\Delta(\xi)$ is the zero-range universal function.

• The same for all levels

lesson

< 6 b

Finite-range Efimov radial law

$$\frac{E_3^{(n)}}{E_2} = \tan^2 \xi$$
$$-\frac{\hbar^2}{m}H^2 = E_3^{(n)} + E_2 = e^{\Delta_3^{(n)}(\xi)/s_0}E_*^{(n)}$$

Finite-range Efimov radial law

where $\Delta_3^n(\xi)$ is the finite-range level function.

• $\Delta_3^n(\xi) = s_0 \log \frac{E_3^{(n)} + E_2}{E_3^{(n)}} \rightarrow \Delta(\xi)$ for $n \ge 2$

(4rd lesson)

ons		4	-8 Oc	tober 202	21	14 / 40
•	• • 🗗	• •	€≯	< ≣ >	2	$\mathcal{O} \land \mathcal{O}$

Finite-range Efimov radial law

The results for a Gaussian potential of range r_0 with variable strength can be summarized in the following equations

$$a_B \kappa_3^{(n)} = \tan \xi$$

$$r_0\kappa_3^{(n)} = \gamma_3^{(n)} e^{\Delta_3^{(n)}(\xi)/2s_0} \sin\xi$$

with $\gamma_3^{(n)} = r_0 \kappa_*^{(n)}$ and $E_3^{(n)} = \hbar^2 [\kappa_3^{(n)}]^2 / m$. • The pure numbers $r_0 \kappa_*^{(n)} = \gamma_3^{(n)}$, and $\Delta_3^{(n)}$ are the same for all Gaussian potentials.

The finite-range equation can be related to the zero-range equation as

$$r_{0}\kappa_{3}^{(n)} = \gamma_{3}^{(n)}e^{\Delta(\xi)/2s_{0}}\sin\xi\left(1 + \frac{r_{0}\Gamma_{3}^{(n)}}{\gamma_{3}^{(n)}a_{b}}\right)$$

with $\Gamma_3^{(n)}$ the finite-range parameter of level *n*, $\Gamma_3^{(n)} \rightarrow 0$ as n > 2

Gaussian characterization of the window for N, A > 3

- The Gaussian characterization of the universal window can be extended to describe systems composed by more than three particles.
- The DSI, which emerges in the three-body sector and gives rise to the Efimov spectrum, strongly constrains the N > 3 (bosons) or A > 3 (nucleons) energy spectrum.
- For equal bosons, where the spatial wave function is symmetric, DSI can be observed well beyond three particles.
- In the case of A nucleons, the spatial-symmetric wave function is dominant only up to four particles
- Deviations from the bosonic-Efimov scenario appear for the A > 4 levels
- It is interesting to explore how the energy levels emerge from the unitary limit.

э

Gaussian characterization for N > 3

 Defining the angle: a_Bκ_N^(m) = tan ξ the spectrum is determined by the equation

$$r_0\kappa_N^{(m)} = \gamma_N^{(m)}e^{\Delta_N^{(m)}(\xi)/2s_0}\sin\xi$$

with m = 0 being the *N*-body ground state and m = 1 the excited state

- The pure numbers $\gamma_N^{(m)} = r_0 \kappa_{*,N}^{(m)}$, determining the energies at the unitary limit, $E_{*,N}^{(m)}$, are characteristic of every Gaussian potential.
- The energy of the level *m* is $E_N^{(m)} = \hbar^2 [\kappa_N^{(m)}]^2 / m$ and $\Delta_m^N(\theta)$ is the Gaussian level function for *N* bosons in the states m = 0, 1:

$$\Delta_N^{(m)}(heta) = s_0 \log rac{E_N^{(m)} + E_2}{E_{*,N}^{(m)}}$$

Gaussian characterization for $N \leq 6$

э

< E

< 🗇 🕨

Gaussian characterization for $N \leq 6$

The *N* bosons spectrum can be put in the following way:

$$\kappa_N^{(m)} a_B = \tan \xi, \quad \kappa_{*,N}^{(m)} a_B + \Gamma_N^{(m)} = \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

э

(4rd lesson)

Gaussian characterization of the universal window

- The gaussian charaterization for three bosons does not show the Thomas collapse
- It introduces a finite-range parameter $\Gamma_3^{(n)}$ and for $N > 3 \Gamma_N^{(m)}$, with m = 0, 1
- For *N* = 3 the gaussian charaterization captures important properties observed in experiments as the van der Waals universality
- It is able to describe (theoreticaly) movements of the helium trimer along the window
- Can this description be extended for general N > 3
- We can expect a break down of the universal plus finite-raneg description as N >> 3
- What emerges is a correlation between few- and many-body dynamics

Universal window for N bosons

Potential	<i>E</i> ₂ (mK)	<i>E</i> ₃ (mK)	<i>E</i> ₄ (mK)	$r_0^{(3)}(a_0)$	$r_0^{(4)}(a_0)$
HFD-HE2	0.8301	117.2	535.6	11.146	11.840
LM2M2	1.3094	126.5	559.2	11.150	11.853
HFD-B3-FCH	1.4475	129.0	566.1	11.148	11.853
CCSAPT	1.5643	131.0	571.7	11.149	11.851
PCKLJS	1.6154	131.8	573.9	11.148	11.852
HFD-B	1.6921	133.1	577.3	11.149	11.854
SAPT96	1.7443	134.0	580.0	11.147	11.850

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Universal window for N bosons

• The different trimer predictions are on top of the curve predicted by the following potential:

• for *N* = 3

$$V^{(3)}(r_{ij}) = V_0^{(3)} e^{-r_{ij}^2/(r_0^{(3)})^2}$$

this potential, with variable strength describes the motion along the universal particles for the helium dimer and trimer

$$V^{(4)}(r_{ij}) = V_0^{(4)} e^{-r_{ij}^2/(r_0^{(4)})^2}$$

this potential, with variable strength describes the motion along the universal particles for the helium dimer and tetramer

• Up to which number of particles this behavior will hold?

Universal window for N bosons

This behavior degraded between 10 to 20 bosons \rightarrow a non universal behavior appears!

lesson)

From Universal to non-universal behavior

- The gaussian characterization has been done using an attractive gaussian interaction
- As $N \to \infty$ the ground state energy per particle $E_N/N \to \infty$
- To stabilize the system a repulsion is needed
- Based on the results of EFT at LO the following potential can be studied

$$V = V_0 \sum_{i < j} e^{-r_{ij}^2/r_0^2} + W_0 \sum_{i < j < k} e^{-2
ho_{ijk}^2/
ho_0^2}$$

with $\rho_{ijk}^2 = (2/3)(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)$

- r₀ and V₀ are fixed to reproduce the two-body physics: dimer energy and scattering length
- W_0 could be fixed to reproduce the trimer energy
- The range of the three-body fore ρ_0 has to be analyzed

From Universal to non-universal behavior

э

< 🗇 🕨

From Universal to non-universal behavior

	nhysic	al point	unitary point			
		HFD-HE2				
	SGP	HFD-HE2	SGP	HFD-HE2		
$r_0[a_0]$	10.0485		10.0485			
$V_0[K]$	1.208018		1.150485			
$ ho_0[a_0]$	8.4853		8.4853			
<i>W</i> ₀ [K]	3.011702		3.014051			
<i>E</i> ₄ [K]	0.536	0.536	0.440	0.440		
<i>E</i> ₅ [K]	1.251	1.266	1.076	1.076		
<i>E</i> ₆ [K]	2.216	2.232	1.946	1.963		
<i>E</i> ₁₀ /10[K]	0.792(2)	0.831(2)	0.714(2)	0.746(2)		
<i>E</i> ₂₀ /20[K]	1.525(2)	1.627(2)	1.389(2)	1.491(2)		
<i>E</i> ₄₀ /40[K]	2.374(2)	2.482(2)	2.170(2)	2.308(2)		
<i>E</i> ₇₀ /70[K]	3.07(1)	3.14(1)	2.80(1)	2.92(1)		
E ₁₁₂ /112[K]	3.58(2)	3.63(2)	3.30(2)	3.40(2)		
$E_N/N(\infty)[K]$	7.2(3)*	7.14(2)	6.8(3)*	6.72(2)		
HFD-B [K]		7.33(2)		6.73(2)		

• the ρ_0 parameter works as a non-universal parameter to fix the correct amount of repulsion needed to describe the curve E_N/N

• It takes into account non-universal physics

lesson)

3

(日)

The three-nucleon system

- The two-nucleon states $J^{\pi} = 0^+$ and 1^+ belongs to the universal window.
- The 0⁺ state is an *s*-wave state
- The 1⁺ has a dominant *s*-wave component, pprox 95%
- The lightest nuclei, ²H, ³H, ³He and ⁴He have large probabilities to be in L = 0, we expect to observe universal properties.
- Important questions to be clarified are the lack of excited states in the three- and four-nucleon systems.
- The doublet neutron-deuteron scattering length, ${}^{2}a_{nd} \approx 0.65$ fm is very small value compared to the triplet neutron-proton scattering length $a_{np} \approx 5.2$ fm.
- Data for low energy neutron-deuteron scattering reveal the presence of a triton virtual state.
- All these properties can be traced back to the position of the nuclear system inside the universal window.

The three-nucleon system

• The study of the universal window in the case of three nucleons has to consider the two different values of the singlet and triplet scattering lengths, a_s and a_t .

- the nuclear plane is defined when the ratio a_s/a_t is close to the experimental value, $a_s/a_t = -4.38$
- To characterize the universal window we construct a spin-dependent Gaussian potential with different strengths and ranges in the spin-isospin channels S, T = 0, 1 and 1, 0

$$V(r) = V_0 e^{-r^2/r_0^2} \mathcal{P}_0 + V_1 e^{-r^2/r_1^2} \mathcal{P}_1$$

• \mathcal{P}_0 and \mathcal{P}_1 are projectors on the *S*, T = 0, 1 and *S*, T = 1, 0 channels • In the following we study the spectrum of the three-nucleon $J^{\pi} = 1/2^+$ state considering $r_0 = r_1$, for which choice, at the unitary limit, the spectrum coincides with the boson case.

• V_0 and V_1 are varied maintaining $a_s/a_t = -4.38$

The nuclear plane

4-8 October 2021 29 / 40

æ

イロト イロト イヨト イヨト

The universal window for A = 2, 3, 4

lesson

4-8 October 2021 30 / 40

2

The universal window for A = 2, 3

э

Gaussian characterization for $A \le 6$

:5	:550	ssor

2

Gaussian characterization for $A \leq 6$

<i>a</i> ₁ (fm)	E ₂ (MeV)	E ₃ (MeV)	E_3^* (MeV)	E ₄ (MeV)	E_4^* (MeV)	⁶ He(MeV)	⁶ Li(MeV)
5.4802	-2.2255	-10.2455	-	-39.843	-11.19	-41.60	-46.74
5.5980	-2.1098	-10.0056	-	-39.221	-10.93	-40.87	-45.82
6.0683	-1.7270	-9.1903	-	-37.093	-10.01	-38.36	-42.71
6.6607	-1.3762	-8.4054	-	-35.017	-9.14	-35.95	-39.67
7.4310	-1.0593	-7.6526	-	-32.997	-8.31	-33.58	-36.77
8.4756	-0.77842	-6.9333	-	-31.035	-7.52	-31.31	-33.95
9.9750	-0.53599	-6.2493	-	-29.135	-6.78	-	-31.23
12.3136	-0.33466	-5.6023	-	-27.300	-6.08	-	-28.62
16.4715	-0.17736	-4.9945	-	-25.536	-5.43	-	-26.17
20.0638	-0.11633	-4.7058	-0.1168	-24.682	-5.13	-	-24.96
22.6041	-0.09038	-4.5654	-0.0920	-24.262	-4.98	-	-24.41
25.9589	-0.06756	-4.4278	-0.0705	-23.847	-4.83	-	-
30.5953	-0.04794	-4.2927	-0.0530	-23.437	-4.69	-	-
37.4216	-0.03158	-4.1605	-0.0385	-23.032	-4.55	-	-
48.4699	-0.01855	-4.0311	-0.0270	-22.633	-4.42	-	-
69.4131	-0.00891	-3.9044	-0.0182	-22.238	-4.28	-	-
124.3314	-0.00273	-3.7807	-0.0119	-21.850	-4.15	-	-
∞	0	-3.6322	-0.0068	-21.378	-4.00	-	-

▲口▶▲圖▶▲臣▶▲臣▶ 臣 の�?

Gaussian characterization for $A \leq 6$

- The energies are described only quantitatively
- Based on EFT at LO (and the results on bosons), we introduce a three-body force

$$W(\rho) = W_0 e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_3^2}$$

• with the strength and range fixed to describe E_3 and E_4

Gaussian characterization for A >> 3

< A

From few to many bodies

- Inside the universal window we observe universal behavior encoded in two quantities: the dimer energy and the scattering length
- To describe these two quantities we contruct a two-parameter potential used to characterize the universal window
- For more than two bodies this potential is able to capture many dynamical properties
- Increasing the number of particles non-universal behavior could appear
- It can be taken into account by fixing with detail the range of the three-body repulsion
- This parameter can be fixed in the few-body sector to describe for example *E*₃ and *E*₄
- The complete potential is parametrized by four low energy observables
- This implies a strong correlation between the few-body and many-body dynamics

(4rd lesson)

The 2 + 1 scattering length

- In the two-body system the scattering length and the dimer energy are stricted correlated inside the universal window: $k_d = 1/a + r_{eff}k_d^2/2$
- The atom-dimer scattering length is stricted correlated to the discrete spectrum
- The functional form in zero-range theory was derived by Efimov

$$a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_* a_B) + d_3]$$

- d_1 , d_2 and d_3 are universal numbers
- κ_{*} is the three-body parameter belonging to one of the three-body energy branches
- In the case of finite-range interactions

$$a_{AD}/a_B = d_1 + d_2 \tan[s_0 \ln(\kappa_*^{(n)} r_0 (a_B/r_0) + \Gamma_3^{(n)}) + d_3]$$

- $\kappa_*^{(n)} r_0 = \gamma_3^{(n)}$, is used as the driving term
- $\Gamma_3^{(n)}$ is a finite-range three-body parameter

The 2 + 1 scattering length

Putting numbers: At $r_0/a_B = 0.0637 \rightarrow a_{AD}/a_B = 1.19$ Using the LM2M2 value, $a_B = 182.22 a_0 \rightarrow a_{AD} = 217 a_0$ The LM2M2 value for this quantity of 218.4 a_0 !

The doublet nd scattering length

< 冊

The doublet nd scattering length

Putting numbers: At $r_0/a_B = 0.457 \rightarrow a_{nd}/a_B = 0.08$ Using the deuteron value, $a_B = 4.3 \text{ fm} \rightarrow a_{nd} = 0.4 \text{ fm}$ The experimental value for this quantity of 0.65 fm!