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Motivation

Analogy between

continuous-opinion models
&

granular gases in 1D

Evolution toward consensus is important



Opinion model

System:

- N agents on a network with adjacency matrix Aij

- The state/opinion of agent i is si ∈ (−∞,∞)
- The state of the system at a given time is S ≡ {si}Ni=1

Dynamics:

- Choose two agents i and j with a rate

π(si , sj) = rAijρ(si − sj)

where r > 0, ρ(x) ≥ 0

- Interaction/collision:

si → bijsi ≡ s ′i ≡ si + µ(sj − si )

sj → bijsj ≡ s ′j ≡ sj − µ(sj − si )

where µ ∈ [0, 1] is the persuasibility
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Relation with other models

Deffuant model is recovered when:

- Aij = 1
- µ ∈ [0, 1/2]
- Initially si ∈ [0, 1] for all i
- And

ρ(si − sj) =

{
1 if |si − sj | ≤ ε
0 if |si − sj | > 0

ε ≡ bound of confidence

“Voter” model

- µ = 1
- ρ = 1
- Trivial limit: both agents copy simultaneously
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Properties

(i) Conservation of the “total opinion”:

s ′i + s ′j = si + sj

(ii) One consensus state:

si = s ≡ 1

N

N∑
k=1

sk , i = 1, . . . ,N

(iii) Dissipation of “opinion energy”:

(s ′2i + s ′2j )− (s2i + s2j ) = −2µ(1− µ)(si − sj)
2 ≤ 0
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Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

s −→ velocity

µ =
1 + α

2
; α ∈ [−1, 1] coefficient of normal restitution

- Properties:

(i) Conservation of linear momentum
(ii) Zero-temperature state

(iii) Dissipation of energy

- But “stochastic dynamics”



Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

s −→ velocity

µ =
1 + α

2
; α ∈ [−1, 1] coefficient of normal restitution

- Properties:

(i) Conservation of linear momentum
(ii) Zero-temperature state
(iii) Dissipation of energy

- But “stochastic dynamics”



Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

s −→ velocity

µ =
1 + α

2
; α ∈ [−1, 1] coefficient of normal restitution

- Properties:

(i) Conservation of linear momentum
(ii) Zero-temperature state
(iii) Dissipation of energy

- But “stochastic dynamics”



Master equation

- p(S , t) ≡ the probability density of state S at time t

∂tp =
∑
i>j

(|α|−1b−1ij − 1)π(si , sj)p

where b−1ij is the inverse of bij

- pi (s, t) ≡ 〈δ(s − si )〉 probability density of si at time t:

∂tpi (si , t) =
∑
{j |j 6=i}

∫
dsj (|α|−1b−1ij − 1)π(si , sj)pij(si , sj , t)
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Opinion temperature

Mean opinion is conserved:

s ≡ 1

N

∑
i

〈si 〉 ⇒ d

dt
s = 0

Opinion temperature:

T ≡ 1

N

∑
i

〈(si − s)2〉 ⇒ d

dt
T = −ζT

with ζ ≡ cooling rate

ζ ≡ µ(1− µ)

NT

∑
{i ,j |i 6=j}

∫
dsidsj (si − sj)

2π(si , sj)pij(si , sj , t) ≥ 0



Absorbing and consensus states

- T is a decreasing function of time

- S is a consensus state ⇔ T = 0

- An absorbing state ( d
dtT = 0) is not necessarily

a consensus state (T = 0)

* If π(si , sj) > 0 when si 6= sj , then
S is a consensus state ⇔ S is an absorbing state
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Mean field

Two approximations:

1. Homogeneity (exact for fully-connected networks):

Aij = 1,

pi (s, t) ' p(s, t)

2. Mean-field approximation (“Molecular chaos”):

pij(si , sj , t) ' pi (si , t)pj(sj , t)

Boltzmann kinetic equation for f (s, t) ≡ Np(s, t):

∂t f (si , t) '
∫

dsj (|α|−1b−1ij − 1)π(si , sj)f (si , t)f (sj , t)

1D granular gas and the opinion model have the same
mesoscopic description
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Mean field for π(si , sj) = r |si − sj |β

- The system reaches consensus for any β > 0 and α ∈ (−1, 1)

f (s, t)→ Nδ(s − s)

- Approach to consensus:

– Scaling solution:

f (s, t) = Ns−10 φ(c); s0 ≡
√

2T (t); c ≡ s

s0

– For β = 0:

φ(c) =
2
√

2

π [1 + 2c2]2

– For β > 0, φ can be approximated by the sum of
two Gaussian distributions
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Theory & simulations
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Phase diagram
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Conclusions

1. The opinion temperature is an useful concept (absorbing
and consensus states)

2. If the probability of two voters having different opinions is
nonzero then the absorbing state coincides with the unique
consensus state

3. For π(si , sj) = r |si − sj |β the system always reaches consensus

- For |α| ≤ |αc |(β): 1 group of voters reaches consensus
- For |α| ≥ |αc |(β): 2 groups of voters reach consensus

- Coexistence dominates consensus when |α| is big enough
(weak interaction)

- Steady state if agents tend to be more radical with time

4. Straightforward generalization to higher dimensions
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