A continuous-opinion model inspired by the physics of granular gases

Nagi Khalil
nagi.khalil@urjc.es

Universidad
Rey Juan Carlos

Workshop on Sociophysics: Social Phenomena from a Physics Perspective
October 18-22, 2021

Physica A 572, 125902 (2021)
Motivation

Analogy between continuous-opinion models & granular gases in 1D

Evolution toward consensus is important
Opinion model

System:
- N agents on a network with adjacency matrix A_{ij}
- The state/opinion of agent i is $s_i \in (-\infty, \infty)$
- The state of the system at a given time is $S \equiv \{s_i\}_{i=1}^N$
Opinion model

System:
- \(N \) agents on a network with adjacency matrix \(A_{ij} \)
- The state/opinion of agent \(i \) is \(s_i \in (\mathbb{R}, \mathbb{R}) \)
- The state of the system at a given time is \(S \equiv \{s_i\}_{i=1}^N \)

Dynamics:
- Choose two agents \(i \) and \(j \) with a rate
 \[
 \pi(s_i, s_j) = rA_{ij} \rho(s_i - s_j)
 \]
 where \(r > 0, \rho(x) \geq 0 \)
- Interaction/collision:
 \[
 s_i \rightarrow b_{ij} = s_i' \equiv s_i + \mu(s_j - s_i)
 \]
 \[
 s_j \rightarrow b_{ij} = s_j' \equiv s_j - \mu(s_j - s_i)
 \]
 where \(\mu \in [0, 1] \) is the persuasibility
Relation with other models

Deffuant model is recovered when:
- $A_{ij} = 1$
- $\mu \in [0, 1/2]$
- Initially $s_i \in [0, 1]$ for all i
- And

$$
\rho(s_i - s_j) = \begin{cases}
1 & \text{if } |s_i - s_j| \leq \epsilon \\
0 & \text{if } |s_i - s_j| > 0
\end{cases}
$$

$\epsilon \equiv$ bound of confidence
Relation with other models

Deffuant model is recovered when:
- \(A_{ij} = 1 \)
- \(\mu \in [0, 1/2] \)
- Initially \(s_i \in [0, 1] \) for all \(i \)
- And

\[
\rho(s_i - s_j) = \begin{cases}
1 & \text{if } |s_i - s_j| \leq \epsilon \\
0 & \text{if } |s_i - s_j| > 0
\end{cases}
\]

\(\epsilon \equiv \) bound of confidence

“Voter” model
- \(\mu = 1 \)
- \(\rho = 1 \)
- Trivial limit: both agents copy simultaneously
Properties

(i) Conservation of the “total opinion”:

\[s_i' + s_j' = s_i + s_j \]
Properties

(i) Conservation of the “total opinion”:

\[s'_i + s'_j = s_i + s_j \]

(ii) One consensus state:

\[s_i = \bar{s} \equiv \frac{1}{N} \sum_{k=1}^{N} s_k, \quad i = 1, \ldots, N \]
Properties

(i) Conservation of the “total opinion”:

\[s_i' + s_j' = s_i + s_j \]

(ii) One consensus state:

\[s_i = \bar{s} \equiv \frac{1}{N} \sum_{k=1}^{N} s_k, \quad i = 1, \ldots, N \]

(iii) Dissipation of “opinion energy”:

\[(s_i'^2 + s_j'^2) - (s_i^2 + s_j^2) = -2\mu(1 - \mu)(s_i - s_j)^2 \leq 0 \]
Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

 \[s \rightarrow \text{velocity} \]

 \[\mu = \frac{1 + \alpha}{2}; \quad \alpha \in [-1, 1] \text{ coefficient of normal restitution} \]
Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

\[s \rightarrow \text{velocity} \]

\[\mu = \frac{1 + \alpha}{2}; \quad \alpha \in [-1, 1] \quad \text{coefficient of normal restitution} \]

- Properties:
 (i) Conservation of linear momentum
 (ii) Zero-temperature state
 (iii) Dissipation of energy
Analogy/difference with a 1D granular gas

- One-dimensional granular gas with

\[s \rightarrow \text{velocity} \]

\[\mu = \frac{1 + \alpha}{2}; \quad \alpha \in [-1, 1] \quad \text{coefficient of normal restitution} \]

- Properties:
 (i) Conservation of linear momentum
 (ii) Zero-temperature state
 (iii) Dissipation of energy

- But “stochastic dynamics”
Master equation

- \(p(S, t) \equiv \) the probability density of state \(S \) at time \(t \)

\[
\partial_t p = \sum_{i > j} (|\alpha|^{-1} b_{ij}^{-1} - 1) \pi(s_i, s_j)p
\]

where \(b_{ij}^{-1} \) is the inverse of \(b_{ij} \)
Master equation

- \(p(S, t) \equiv \) the probability density of state \(S \) at time \(t \)

\[
\partial_t p = \sum_{i>j} (|\alpha|^{-1} b_{ij}^{-1} - 1) \pi(s_i, s_j) p
\]

where \(b_{ij}^{-1} \) is the inverse of \(b_{ij} \)

- \(p_i(s, t) \equiv \langle \delta(s - s_i) \rangle \) probability density of \(s_i \) at time \(t \):

\[
\partial_t p_i(s_i, t) = \sum_{\{j|j\neq i\}} \int ds_j (|\alpha|^{-1} b_{ij}^{-1} - 1) \pi(s_i, s_j) p_{ij}(s_i, s_j, t)
\]
Opinion temperature

Mean opinion is conserved:

\[\bar{s} \equiv \frac{1}{N} \sum_i \langle s_i \rangle \implies \frac{d}{dt} \bar{s} = 0 \]

Opinion temperature:

\[T \equiv \frac{1}{N} \sum_i \langle (s_i - \bar{s})^2 \rangle \implies \frac{d}{dt} T = -\zeta T \]

with \(\zeta \equiv \) cooling rate

\[\zeta \equiv \frac{\mu(1 - \mu)}{NT} \sum_{\{i,j|i\neq j\}} \int ds_i ds_j (s_i - s_j)^2 \pi(s_i, s_j) p_{ij}(s_i, s_j, t) \geq 0 \]
Absorbing and consensus states

- T is a decreasing function of time
Absorbing and consensus states

- T is a decreasing function of time

- S is a consensus state $\iff T = 0$
Absorbing and consensus states

- T is a decreasing function of time

- S is a consensus state $\iff T = 0$

- An absorbing state ($\frac{dT}{dt} = 0$) is not necessarily a consensus state ($T = 0$)

* If $\pi(s_i, s_j) > 0$ when $s_i \neq s_j$, then S is a consensus state $\iff S$ is an absorbing state
Mean field

Two approximations:

1. Homogeneity (exact for fully-connected networks):

 \[A_{ij} = 1, \]
 \[p_i(s, t) \approx p(s, t) \]

2. Mean-field approximation ("Molecular chaos"):

 \[p_{ij}(s_i, s_j, t) \approx p_i(s_i, t)p_j(s_j, t) \]
Mean field

Two approximations:

1. Homogeneity (exact for fully-connected networks):

\[A_{ij} = 1, \]
\[p_i(s, t) \approx p(s, t) \]

2. Mean-field approximation ("Molecular chaos"):

\[p_{ij}(s_i, s_j, t) \approx p_i(s_i, t)p_j(s_j, t) \]

Boltzmann kinetic equation for \(f(s, t) \equiv Np(s, t) \):

\[\partial_t f(s_i, t) \approx \int ds_j (|\alpha|^{-1} b_{ij}^{-1} - 1) \pi(s_i, s_j)f(s_i, t)f(s_j, t) \]
Mean field

Two approximations:
1. Homogeneity (exact for fully-connected networks):

\[A_{ij} = 1, \]
\[p_i(s, t) \simeq p(s, t) \]

2. Mean-field approximation ("Molecular chaos"):

\[p_{ij}(s_i, s_j, t) \simeq p_i(s_i, t)p_j(s_j, t) \]

Boltzmann kinetic equation for \(f(s, t) \equiv Np(s, t) \):

\[\partial_t f(s_i, t) \simeq \int ds_j (|\alpha|^{-1}b_{ij}^{-1} - 1)\pi(s_i, s_j)f(s_i, t)f(s_j, t) \]

1D granular gas and the opinion model have the same mesoscopic description
Mean field for $\pi(s_i, s_j) = r |s_i - s_j|^\beta$

- The system reaches consensus for any $\beta > 0$ and $\alpha \in (-1, 1)$

$$f(s, t) \rightarrow N\delta(s - \bar{s})$$
Mean field for $\pi(s_i, s_j) = r|s_i - s_j|^\beta$

- The system reaches consensus for any $\beta > 0$ and $\alpha \in (-1, 1)$

$$f(s, t) \rightarrow N\delta(s - \bar{s})$$

- **Approach** to consensus:
Mean field for $\pi(s_i, s_j) = r|s_i - s_j|^\beta$

- The system reaches consensus for any $\beta > 0$ and $\alpha \in (-1, 1)$

$$f(s, t) \rightarrow N\delta(s - \bar{s})$$

- **Approach** to consensus:
 - **Scaling** solution:

$$f(s, t) = Ns_0^{-1} \phi(c); \quad s_0 \equiv \sqrt{2T(t)}; \quad c \equiv \frac{s}{s_0}$$
Mean field for $\pi(s_i, s_j) = r |s_i - s_j|^\beta$

- The system reaches consensus for any $\beta > 0$ and $\alpha \in (-1, 1)$

$$f(s, t) \rightarrow N\delta(s - \bar{s})$$

- **Approach** to consensus:
 - **Scaling** solution:
 $$f(s, t) = Ns_0^{-1}\phi(c); \quad s_0 \equiv \sqrt{2T(t)}; \quad c \equiv \frac{s}{s_0}$$

 - For $\beta = 0$:
 $$\phi(c) = \frac{2\sqrt{2}}{\pi [1 + 2c^2]^2}$$
Mean field for $\pi(s_i, s_j) = r|s_i - s_j|^\beta$

- The system reaches consensus for any $\beta > 0$ and $\alpha \in (-1, 1)$

$$f(s, t) \rightarrow N\delta(s - \bar{s})$$

- **Approach** to consensus:
 - **Scaling** solution:
 $$f(s, t) = Ns_0^{-1}\phi(c); \quad s_0 \equiv \sqrt{2T(t)}; \quad c \equiv \frac{s}{s_0}$$
 - For $\beta = 0$:
 $$\phi(c) = \frac{2\sqrt{2}}{\pi [1 + 2c^2]^2}$$
 - For $\beta > 0$, ϕ can be approximated by the sum of two Gaussian distributions
Theory & simulations

\[\beta = 0 \]

\[|\alpha| = 0.7; 0.8; 0.9; \beta = 1 \]

\[|\alpha| = 0.8; \beta = 0.5; 1; 1.5 \]
Phase diagram

\[\beta \]

\[|\alpha| \]

\[\phi(c) \]

Unimodal

Multimodal
Conclusions

1. The **opinion temperature** is an useful concept (absorbing and consensus states)

2. If the probability of two voters having different opinions is nonzero then the absorbing state coincides with the unique consensus state

3. For $\pi(s_i, s_j) = r|s_i - s_j|^\beta$ the system always reaches consensus
 - For $|\alpha| \leq |\alpha_c| (\beta)$: 1 group of voters reaches consensus
 - For $|\alpha| \geq |\alpha_c| (\beta)$: 2 groups of voters reach consensus

 - **Coexistence** dominates consensus when $|\alpha|$ is big enough (weak interaction)

 - **Steady state** if agents tend to be more radical with time

4. Straightforward generalization to higher dimensions