
What drives bitcoin? An approach from continuous local transfer
entropy and deep learning classification models
Andrés Garcı́a-Medina
CONACyT Research Fellow at Centro de Investigación en Matemáticas
andres.garcia@cimat.mx

Abstract

Bitcoin has attracted attention from different market participants due to unpredictable price patterns.
Sometimes, the price has exhibited big jumps. Bitcoin prices have also had extreme, unexpected
crashes. We test the predictive power of a wide range of determinants on bitcoins’ price direction
under the continuous transfer entropy approach as a feature selection criterion. Accordingly, the sta-
tistically significant assets in the sense of permutation test on the nearest neighbour estimation of local
transfer entropy are used as features or explanatory variables in a deep learning classification model to
predict the price direction of bitcoin. The proposed variable selection methodology excludes the NAS-
DAQ index and Tesla as drivers. Under different scenarios and metrics, the best results are obtained
using the significant drivers during the pandemic as validation. In the test, the accuracy increased in
the post-pandemic scenario of July 2020 to January 2021 without drivers. In other words, our results
indicate that in times of high volatility, Bitcoin seems to self-regulate and does not need additional
drivers to improve the accuracy of the price direction [1].

Data

01/Jan/2017 to 09/Jan/2021 at a daily frequency for a total of n = 1470 observations.

Request:
Tweets

Sentiment Analysis: Lexicon/Dictionary

Daily Polarity: Aggregated

Imputation: splines order three (20%)

Visualization: Word Cloud

Stationary: Differences

Sources:
Social Media

Transfer Entropy

Transfer Entropy (TE) measures the flow of information from system Y over system X in a non-
symmetric way. Let us denote the sequences of states of the system X and Y as follows: xi = x(i) and
yi = y(i), i = 1, . . . , N Entropy or Information Transfer is defined as [2]:

TY→X(k, l) =
∑

p(xi+1, x
(k)
i , y

(l)
i) log

p(xi+1|x(k)i , y
(l)
i)

p(xi+1|x(k)i)
, (1)

The idea is to model the time series as a Markovian system and incorporate the temporal dependen-
cies by considering the states xi and yi to predict the next state xi+1. The deviation of the generalized
Markov property is then measured: p(xi+1|xi, yi) = p(xi+1|xi). If there is no deviation Y has no
influence on X .

Local Transfer Entropy

TE metric can be formulated as a global average or expectation value of a local TE at each observa-
tion [3]:

TY→X(k, l) = 〈tY→X(i + 1, k, l)〉,

tY→X(i + 1, k, l) = log
p(xi+1|x(k)i , y

(l)
i)

p(xi+1x
(k)
i)

(2)

The measure is local in the sense it is defined at each time n for each destination element X in the
system and each causal information source Y of the destination. The local TE may be either positive
or negative (with the source y

(l)
i being either informative or misinformative respectively) for a specific

event set (xi+1, x
(k)
i , y

(l)
i)

Variable Selection

We applying the local TE from each source to bitcoin using the nearest-neighbor 1 estimation [4].
Here, the Markovian order k, l and neighbor parameter K are varying from 1 to 10, for a total of 1000
different estimations for each driver. The permutation testing is used to measure the statistical signi-
ficative flow of information. Then, the highest TE on the tuple {k, l,K} of each sifgnificative driver
is considered further as feature of a deep learning model.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Deep learning classification models

We can think of artificial neural networks (ANNs) as a mathematical model whose operation is in-
spired by the activity and interactions between neuronal cells due to their electrochemical signals. The
main advantages of ANNs are their non-parametric and nonlinear characteristics. The essential ingre-
dients of an ANN are the neurons that receive an input vector xi, and through the point product with a
vector of weights w, generate an output via the activation function g(·):

f (xi) = g(xu · w) + b, (3)

where b is a trend to be estimated during the training process. The basic procedure is the following.
The first layer of neurons or input layer receives each of the elements of the input vector xi and trans-
mits them to the second (hidden) layer. The next hidden layers calculate their output values or signals
and transmit them as an input vector to the next layer until reaching the last layer or output layer,
which generates an estimation for an output vector. Particularly, we considered models with several
layers also known as deep learning models [5].

Specifications

• Training set: 75% (before pandemic)

• Validation set: 13% (pandemic)

• Test set: 12% (post-pandemic)

• scenarios:

S1 : univariate
S2 : all features
S3 : significative features
S4 : local TE
S5 : significative features + local TE

• architectures:

D1 : Deep LSTM
D2 : Wide LSTM
D3 : Deep Bidirectional LSTM
D4 : Wide Bidirectional LSTM
D5 : CNN

Classification metrics
Design Case Acc AUC TPR TNR PPV FOR BA F1 #

D1 S1 64.30 0.4981 90.99 11.67 67.01 60.38 51.33 77.18
S2 56.82 0.4946 74.08 22.78 65.42 69.17 48.43 69.48
S3 61.78 0.5188 79.58 26.67 68.15 60.17 53.12 73.42 2
S4 51.96 0.4898 60.70 34.72 64.71 69.06 47.71 62.65
S5 60.47 0.4842 83.66 14.72 65.93 68.64 49.19 73.74

D2 S1 60.75 0.4786 85.92 11.11 65.59 71.43 48.51 74.39
S2 52.06 0.4870 56.48 43.33 66.28 66.45 49.91 60.99
S3 53.46 0.4997 56.76 46.94 67.85 64.50 51.85 61.81
S4 55.70 0.4794 70.56 26.39 65.40 68.75 48.48 67.89
S5 50.93 0.4806 55.49 41.94 65.34 67.67 48.72 60.02

D3 S1 65.05 0.5072 95.21 5.56 66.54 62.96 50.38 78.33 3
S2 55.70 0.5248 63.38 40.56 67.77 64.04 51.97 65.50
S3 57.38 0.5176 67.32 37.78 68.09 63.04 52.55 67.71
S4 51.40 0.5051 52.96 48.33 66.90 65.75 50.65 59.12
S5 54.21 0.5094 60.56 41.67 67.19 65.12 51.12 63.70

D4 S1 61.21 0.4831 86.48 11.39 65.81 70.07 48.93 74.74
S2 48.13 0.4718 48.17 48.06 64.65 68.02 48.11 55.21
S3 47.20 0.4771 43.24 55.00 65.46 67.05 49.12 52.08 1
S4 45.98 0.4359 50.99 36.11 61.15 72.80 43.55 55.61
S5 51.96 0.4743 55.49 45.00 66.55 66.11 50.25 60.52

D5 S1 58.04 0.5017 78.59 17.50 65.26 70.70 48.05 71.31
S2 55.23 0.4942 62.39 41.11 67.63 64.34 51.75 64.91
S3 54.21 0.4994 63.10 36.67 66.27 66.50 49.88 64.65
S4 54.49 0.5269 62.39 38.89 66.82 65.60 50.64 64.53
S5 55.79 0.5316 61.83 43.89 68.49 63.17 52.86 64.99 2

Conclusions

• An attention must be paid to the evidence about the order k = l = 1 throws values near zero. Practi-
tioners usually assume this scenario under Gaussian estimations. Then, a precaution must be put to
the memory parameters of Markov at least when working with the KSG estimation.

• On the other hand, the forecasting of Bitcoin’s price direction improves in the validation set, but not
for all metrics in the test dataset when including significant drivers or local TE as a feature.

• Two methodological contributions to highlight are the use of nontraditional indicators such as mar-
ket sentiment, as well as a continuous estimation of the local TE as a tool to determine additional
drivers in the classification model.

• Finally, the models presented here are easily adaptable to high-frequency data because they are
non-parametric and nonlinear in nature.

Acknowledgements

This research was funded Consejo Nacional de Ciencia y Tecnologı́a (CONACYT, Mexico) through
fund FOSEC SEP-INVESTIGACION BASICA (Grant No. A1-S-43514).

References
[1] A. Garcı́a-Medina and T. L. D. Huynh, “What drives bitcoin? an approach from continuous local transfer entropy and deep learning classifica-

tion models,” arXiv preprint arXiv:2109.01214, 2021.

[2] T. Schreiber, “Measuring information transfer,” Physical review letters, vol. 85, no. 2, pp. 461–464, 2000.

[3] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, “Local information transfer as a spatiotemporal filter for complex systems,” Phys. Rev. E,
vol. 77, p. 026110, Feb 2008.

[4] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[5] J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery,
2018.

1Also known as Kraskov estimation

