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Introduction
• Social dynamics is the study of the social macroscopic prop-

erties of human communities determined by the interactions
between people within this group.

• Usually a group of individuals in a model have different
states that change via interactions with his/her neighbors,
defined by a network where the individuals are the nodes
and interaction between them is the edges (or links).

• In this work we also consider the time evolution of the state
of the link between two agents, not only the agent state.
The coupling between these two properties defines the dy-
namics of the ensemble [1].

Theoretical Model
• We consider a set with M agents connected by a RGG (see

Fig. 5a) with two different opinions: blue and red. Each
pair of agents can be connected by a friendly or non-friendly
link. Both agents and links have a time evolution for its
states and the control parameter is the probability p.

• There are 6 different pair combinations of agents and links,
named as satisfying and unsatisfying as depicted on Fig. 1.

• The density of satisfying and unsatisfying pairs are ρs and
ρu respectively, been the latter the order parameter of the
model. They evolve with time and the system comes to a
halt when ρu = 0.0, which is an absorbing state. The active
state occurs when the absorbing state is not reached at all,
when ρu remains greater than zero for t → ∞.

• We propose the modularity (or assortativity coefficient) as
another order parameter. It is defined as (Eq. 7.69 on Ref.
[2]):
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where δ(i, j) is the Kronecker delta, κi is the degree of ver-
tex i and ci is the class or type of the vertex i. Here there
are two classes: red (ci = 1) and blue (ci = 2) agents.
This definitions is such that |Λ| < 1.0 and it is positive
if there are more edges between vertices of the same type
than expected by chance, and negative if there are less.
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Figure 1: Six possible confgurations of pairs constructed by two types
of link states, friendly (solid line) and non friendly (dashed line), and two
types of node states, blue and red opinion. The pairs a, c and e are un-
satisfying while pairs b, d and f are satisfying. p is the probability of link
update and 1 − p is the node update one. Adapted from Ref. [1]. The
density of type e pairs is ρe.

Results
Phase diagram

• The density ρu is the immediate order parameter, from
which we can build the phase diagram on the space (α, p)
shown of Fig. 3. The radius α is the interaction distance on
the definition of the RGG, which becomes the other control
parameter of the system.

• Larger p value (more updates on the states) and low connec-
tivity (low α, less interacting neighbors) enable the system
to easyly gets the absorbing state.

• The absorbing state is composed of only satisfying pairs
(see Fig. 2). In this phase all friendly edges connect equal
nodes and non friendly ones connect different ones. This
feature is captured by the modularity Λ.
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Figure 2: Phase diagram of the model. Density ρu in the (α, p) space.
Red squares indicate the region for the Λ calculation on Fig. 3a) and
white circles indicate the estimated phase transition (where ρe = 0.06).
Absorbing phase: dark blue region with ρu ∼ 0.0. Active phase: yellow-
green region with ρu > 0.0.

Modularity
• Considering the associated network with the friendly edges

only, the modularity Λf should be maximum on the absorb-
ing state, while the non-friendly network (containing non
friendly edges only) should have a minimum modularity Λn.

• Fig. 3a shows the two (normalized) modularities calculated
on the red horizontal line indicated on Fig. 1. Λ = 1 (max-
imum) means a perfect assortative network (all edges con-
nect same nodes types) and Λ = −1 (minimum) means
a perfect disassortative one (all edges connect different
nodes types). Indeed in the absorbing state Λf ≃ 1.0 and
Λn ≃ −1.0 as expected.

• Fig. 3b shows the full network in an absorbing state with
different nodes and edges. Fig. 3c shows the associated
friendly network and Fig. 3d shows the non-friendly one.
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Figure 3: a) Λf and Λn calculated on the region 0.5 < α < 3.0 for
p = 0.4 using Networkx package for Python (red line) and our implemen-
tation (blue circles). Vertical black dashed line at α = 1.28 roughly indi-
cates the phase transition: α < 1.28 is the absorbing state and α > 1.28
is the active one. b) Full network on the absorbing phase at the point
(α, p) = (1.0, 0.1). The node colors (blue and red) indicate its states.
Solid and dashed lines indicate friendly and non friendly edges. c) Friendly
network (friendly edges only). d) Non friendly network (non friendly edges
only).

• Fig. 4 shows the modularity phase diagram for both as-
sociated networks. In the absorbing state the modularities
reach an extreme.

• In the active phase both modularities are rougly zero, be-
cause there are all 6 kinds of pairs, with no correlation be-

tween edges and nodes.

Figure 4: Phase diagrams in the (α, p) space of the modularities a)
Λf of the friendly network and b) Λn of the non friendly network. The
colorbar on the right works for both graphics.

• Our strategy to identify the phase transition using short
time simulations is to find the points (α, p) where the un-
statisfying density follows a power law ρe(t) = atb.

• The quality of the fit is measured by the squared of the
sample’s Pearson correlation coefficient (see Eq. 1.1 of Ref.
[3]):
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where the sum
∑

goes through i = ti, ti + 1, ti + 2, ti +
3..., ti +N − 1 = tf , x = ln t and y = ln ρe.

• We found that the phase transition can be roughly esti-
mated by the right border of the region where cr ≲ 1.0 (see
Fig. 5b).
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Figure 5: a) Detail of a RGG with M = 256 nodes and radius α = 1.0.
b) Map of the correlation coefficient cr on the (α, p) space. The power law
fit was performed on the interval 150 < t < 200 where time is measured
in Monte Carlo steps. The green circles (with a dashed line) is the same
curve represented as white circles on Figs. 2 and 4.

Conclusions
• In summary, we have performed steady-state and out of

equilibrium Monte Carlo simulations in order to investigate
the phase transitions of the edge node coupled dynamics on
the Random Geometric Graph.

• We showed that the modularity for each associated network
can be used as order parameter.

• We also showed that the phase transition can be detected
using short time simulations.
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