

Highlights and perspectives from the ALICE experiment

Cristiane Jahnke for the ALICE Collaboration Universidade Estadual de Campinas

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

Collision systems

Pb–Pb / Xe–Xe collisions:

- Quark-gluon plasma (QGP) formation and its properties
 - Equation-of-state, transport coefficients...
- In-medium energy loss Ο
 - Colour-charge and guark-mass dependence

SILAFAE 12^{3/4}

- Thermalisation of heavy-guarks Ο
- Quarkonium dissociation and/or regeneration Ο

- p–Pb collisions:
 - Cold nuclear matter effects can be studied: \cap
 - Nuclear modification of parton densities
 - Propagation in nucleus and in medium
- pp collisions:
 - Reference for studies with p–Pb collisions and Pb–Pb/Xe–Xe collisions 0
 - Studies of several aspects of QCD Ο
- pp and p-Pb collisions:
 - Look for possible collective behaviour in small systems Ο

Main focus of this talk will be in heavy quarks

Cristiane Jahnke

Universidade Estadual de Campinas

Friday, 12 November 2021

2

Why to study heavy quarks?

- Heavy-flavour particles contain charm or beauty quarks:
 - Quarkonium: J/ψ , $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ 1
 - Open heavy-flavour: B meson, D meson, Λ_{c} , Λ_{b} , Σ_{c} and Ξ_{c} \checkmark
- Charm and beauty are produced (in hard scatterings) in the early stages of the collision:
 - Large mass ($m_{c,b} >> \Lambda_{QCD}$) \rightarrow short formation time \checkmark

 - \rightarrow hard probes, even at low p_{τ}
- Charm and beauty can experience the full evolution of the system:
 - They live much longer than the duration of the QGP 1
- Quarkonium melting as a signature of QGP

Quarkonium destruction in a QGP by Debye screening: melted if $r > \lambda_{n}$ (Matsui & Satz, PLB178 (1986) 416)

• Regeneration (Andronic et al, Nucl.Phys.A772:167-199,2006) (Thews et al, Phys. Rev. C63 (2001) 054905)

Why to study light quarks?

4

- Light-flavour particles contain up, down and strange quarks:
 - ✓ Proton, kaons, pions, deuteron, triton, 3 He
 - $\mathsf{K}^{0}_{s}, \Lambda, \phi, \Omega^{-}, \Xi^{-}$
- Light-flavour particles are created in soft or hard process
 - Soft: bulk of particles produced at low transverse momenta $(p_{T} < 2 \text{ GeV}/c)$
 - \rightarrow QCD inspired phenomenological models
 - ✓ Hard: particles with $p_{T} > 2 \text{ GeV}/c$, described by pQCD.
- Hydrodynamic expansion of the QGP and the mechanisms of its hadronization
 - Statistical hadronization model, coalescence...
- Strangeness enhancement as a signature of QGP
- Study the effective interaction between hadrons with different quark content
- Nucleosynthesis mechanisms in hadronic collisions

π, **K**, p, ...

Spectra, particles yields, jets, correlations...

The nuclear modification factor

$$R_{\rm AA} = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{\langle T_{\rm AA}
angle {
m d}\sigma_{\rm pp}/{
m d}p_{\rm T}}$$

- If $R_{AA} = 1$ (at high p_T): no hot medium effects and no cold nuclear matter effects.
- If $R_{AA}^{n} < 1$ hot or cold nuclear matter effects.

Anisotropic flow

$$Erac{d^3N}{dp_T^3} = rac{d^3N}{p_T d\phi dp_T dy} \sum_{n=0}^\infty 2v_n cos[n(\phi-\Phi_R)]$$

- Anisotropic flow is caused by the initial asymmetries in the geometry of the system produced in a non-central collision.
 - Initial spatial anisotropy of the created particles is converted in momentum anisotropy due to the pressure gradients.
- v_2 : indicates collective motion and thermalization
- v_{3} : event-by-event fluctuations

SILAFAE 12^{3/4}

Snellings, New J.Phys. 13 (2011) 055008

ALICE detector (Run 2)

Midrapidity ($|\eta| < 0.9$):

Electromagnetic Calorimeter Time of Flight Transition radiation detector Time Projection Chamber Inner Tracking System

System	Year(s)	√s _{nn} (TeV)	Lint
Pb-Pb	2010, 2011 2015, 2018	2.76 5.02	75 μb ⁻¹ 800 μb ⁻¹
Xe-Xe	2017	5.44	0.3 µb-1
p-Pb	2013 2016	5.02 5.02, 8.16	15 nb ⁻¹ 3 nb ⁻¹ , 25 nb ⁻¹
рр	2009-2013	0.9, 2.76, 7, 8	200 µb ^{.1} , 100 nb ^{.1} 1.5 pb ^{.1} , 2.5 pb ^{.1}
	2015, 2017 2015-2018	5.02 13	1.3 pb-1 36 pb-1

Forward rapidity (-4 < η < -2.5) Muon tracking and trigger

> Int. J. Mod. Phys. A 29 (2014) 1430044 JINST3 S08002

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

8

Open heavy-flavour R_{AA}

9

- Strong suppression of open heavy-flavour particles in Pb–Pb collisions
- Mass ordering:

$$P = R_{AA}(\pi) < R_{AA}(D) \quad (p_T < 10 \text{ GeV}/c)$$

- $R_{AA}(c \rightarrow D) < R_{AA}(b \rightarrow D) (4 < p_T < 10 \text{ GeV}/c)$
- Hint of $R_{AA}(c,b\rightarrow e) < R_{AA}(b\rightarrow e)$ at low p_T

 $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

Model comparisons

- Models including collisional (POWLANG, BAMPS el., TAMU) and collisional+radiative energy loss (BAMPS el.+rad., LIDO, PHSD, Catania, MC@sHQ+EPOS2, Djordjevic) can describe the suppression at high p_T (at least qualitatively)
- Models: TAMU, POWLANG, PHSD, MC@sHQ, LIDO and Catania include quark recombination

- Weaker suppression at higher collision energy
 - Effect predicted by regeneration models
- Models including charm-quark regeneration are in good agreement with the data in both mid- and forward-rapidity
 - TM1 and TM2: includes dissociation and regeneration in QGP and hadronic phase
 - Comovers: suppression via comovers interactions and includes regeneration
 - SHM: charmed particles are generated at chemical freeze-out

$p_{\rm T}$ dependence, mid vs. forward rapidity

- $p_{T} < 5 \text{ GeV}/c$: stronger suppression at forward rapidity.
- $p_{T} > 5 \text{ GeV}/c$: similar suppression for mid- and forward-rapidity.
- Model uncertainties dominated by total ccbar cross section uncertainty
 - TM1 can describe the data over the whole p_{T} range for both midand forward-rapidities.
 - SHM describes the data qualitatively.

ALICE

13

- Light-flavour particles flows in Pb–Pb:
 - A clear mass ordering of v_2 is observed at low p_T , as expected for a system expansion driven by the pressure gradient as described by relativistic hydrodynamics

Phys. Rev. C 102 (2020) 055203

14

- Positive v_2 for prompt D mesons, J/ψ , b $\rightarrow e$
- $\Upsilon(1S) v_2$ compatible with zero
- For $p_T < 3$ GeV/*c*, a mass ordering can be observed: $v_2(\Upsilon(1S)) \leq v_2(b \rightarrow e) \sim v_2(J/\psi) < v_2(D) < v_2(\pi)$
- For $3 < p_T < 6 \text{ GeV}/c$: $v_2(J/\psi) < v_2(D) \sim v_2(\pi)$ due to charm quark thermalization ?
- For $p_T > 6 \text{ GeV}/c$: $v_2(J/\psi) \sim v_2(D) \sim v_2(\pi)$ due to similar path-length dependence of the energy loss ?

JHEP 09 (2018) 006 PLB 813 (2021) 136054 JHEP 10 (2020) 141 PRL 126, 162001 (2021) PRL 123 (2019)192301

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

Triangular flow

15

- v_{3} of prompt D mesons, J/ ψ and π^{\pm}
- For $p_{\tau} < 5$ GeV/*c*:
 - $0 < V_3(J/\Psi) \sim V_3(D) < V_3(\pi^{\pm})$
 - Indication that charm quarks are • sensitive to initial state fluctuations

JHEP 09 (2018) 006 PLB 813 (2021) 136054 JHEP 10 (2020) 141

Xe-Xe vs Pb-Pb

16

System dependence of radial and elliptic flow:

Comparison at similar charged-particle multiplicities but with different initial geometrical eccentricities

Opposite behaviour for radial and elliptic flow: radial flow depends exclusively on the multiplicity, while elliptic flow depends also on the initial eccentricities of the collision region.

Features of the particle production:

- Lower proton-to-pion ratio with respect to the thermal model expectations
- Increase of the phi-to-pion ratio with increasing final-state multiplicity

Eur. Phys. J. C 81(2021) 584

SILAFAE 12^{3/4}

17

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

ALICE, -1.37 < y_{cm} < 0.43 (Preliminary)

FONLL + EPPS16

CMS, -0.9 < y_{cms} < 0 (EPJ C 77 (2017) 269)</p>

10

12

 $p_{_{\rm T}}$ (GeV/c)

Prompt J/ψ is consistent with several model predictions: (EPS09-NLO, CGC+CEM, Energy loss and EPS09 NLO + energy loss)

Non-prompt J/ ψ : FONLL + EPPS16 agrees with data and suggests a small shadowing at low p_{T}

Theoretical models in good agreement with inclusive J/ψ , despite the very different approaches:

- Shadowing (EP09NLO, nCTEQ15, EPPS16)
- CGC (NRQCD, CEM)
- Energy loss
- Final state effects (Transport, comovers)

Cristiane Jahnke

0.8

0.6

0.4

0.2

ALI-PREL-331550

J/ψ vs. ψ(2S) R pPb

- $\psi(2S)$: suppression compatible at forward and backward rapidities.
 - Stronger suppression than J/ψ at backward rapidity, whereas compatible at forward rapidity. Ο
 - Hint for hot matter effects on $\psi(2S)$. Ο

- Light-flavour particles flows in p–Pb following a mass ordering \rightarrow collective behaviour in small systems
- What about heavy-flavour?

- Non-zero v_2 for electrons and muons from heavy-flavour lepton decays
- v_2 of J/ ψ
 - Consistent with zero for $p_{T} < 3 \text{ GeV/}c$
 - $v_2 > 0$ for $p_T > 3$ GeV/c with similar amplitude as measured in semi-central Pb–Pb collisions
- Possible final states effects and collective motion

Light flavour in p–Pb

- Ability to discriminate between nucleosynthesis mechanisms in hadronic collisions.
- The measured p_{T} integrated yield is better described by coalescence than by statistical hadronization models
- The ³_AH/A ratio is well described by the 2-body coalescence prediction while the 3-body formulation is disfavoured by our measurement.

Cristiane Jahnke

Universidade Estadual de Campinas

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

22

Open heavy-flavour production

arXiv:2105.05187v1

- Λ_c^+/D^0 , Σ_c/D^0 and Ξ_c^-/D^0
 - ο Shows a higher value than in e⁺e⁻ collisions
 - Modification not captured by standard hadronization models
- No hadronization universality between e⁺e⁻ and pp
- PYTHIA 8 with Color Reconnection: reasonable reproduction for Λ_c^+/D^0 and Σ_c/D^0 but not Ξ_c^-/D^0

- The p_{T} -differential inclusive J/ ψ production cross sections are measured in the p_{T} range 0 < p_{T} < 40 GeV/c.
 - High momentum reach was achieved thanks to the ALICE electromagnetic calorimeter trigger
- From the non-prompt J/ψ cross section measurements, the beauty quark production cross sections at midrapidity can be extrapolated.

25

- J/ψ self normalized yield
 - Midrapidity: increase faster than linear
 - Enhancement qualitatively described by several model calculations
 - PYTHIA8 which includes multi-parton interactions describes qualitatively the p_{T} dependence
 - Higher enhancement for higher p_{T}
 - Forward-rapidity: shows a linear increase

Ο

- Suppression of the gluon spectrum emitted by a heavy quark of mass *m* and energy *E*:
 - Cone of angular size *m*/*E* around the emitter

- Reclustering the jet constituents according to the Cambridge-Aachen algorithm:
 - Angular distance from one another

- Ratio of the splitting angle distributions for D⁰-meson tagged jets and inclusive jets, in bins of E_{Radiator}
- Radiation suppressed in the expected areas (shaded)

Groomed jets

- The cores of jets are narrower in Pb–Pb compared to pp collisions
- First direct experimental evidence for the modification of the angular scale of groomed jets in heavy-ion collisions

Strong hadron-hadron interactions via femtoscopy

To understand the effective interaction between hadrons with different quark content

Measuring correlations in the momentum space

Cristiane Jahnke

Universidade Estadual de Campinas

Strong hadron-hadron interactions via femtoscopy

- Correlations above unity: implies the presence of an attractive interaction for p-Ω⁻ and p-Ξ⁻ pairs
 - Coulomb interaction + Gaussian distribution for the source shape
 - Underestimate the strength of the measured correlation
 - An attractive interaction exists and exceeds the strength of the Coulomb interaction
- Test for lattice QCD calculation
- Input for the equation-of-state of neutron stars which contain hyperons

Light (anti)nuclei

- Production mechanism of light (anti)nuclei is one of the key challenges of nuclear physics
- Provides an input for indirect dark matter searches in space

- The coalescence parameters B₂ for deuterons and B₃ for helions are compared with parameter-free theoretical predictions.
- A Gaussian wave function describes the deuteron results (left) and overestimates the helion results (right).

arXiv:2109.13026v1

ALICE future perspectives

ALICE future perspectives (Run 3 - now)

ITS2: Consists of seven layers of CMOS MAPS: Complementary

Metal-Oxide-Silicon (CMOS) Monolithic Active Pixel Sensors (MAPS) technology.

- Improved pointing resolution
- Inner barrel with 0.35% X₀ per layer
- Smaller beam pipe with first layer closer to the interaction point (22 mm)

MFT: muon forward tracker

- New tracker based on CMOS MAPS
- Improved muon pointing: tracking before the absorber

TPC with GEMs: Continuous readout at 50 kHz Pb-Pb interaction rate possible due to GEMs

- 50 kHz and luminosity of 13 nb⁻¹ in Pb–Pb collisions in Run 3 + Run 4 (x 50 min. bias in Run 1 and 2)
- 0.6 pb⁻¹ in p–Pb collisions (x 1000 min. bias in Run 2)
- 200 pb⁻¹ in pp collisions

Cristiane Jahnke

ALICE future perspectives (Run 4 - 2027)

33

- ITS3: the three innermost layers of ITS2 will be replaced with three truly cylindrical layers of wafer-scale ultra-thin silicon detectors.
 - Material budget of only 0.05% X₀ per layer
 - Significant improvement in the measurement of low momentum charm and beauty hadrons and low-mass dielectrons.

FoCal: a highly granular Si+W electromagnetic calorimeter (FoCal-E: photons and π^0) combined with a conventional sampling hadronic calorimeter (FoCal-H : photon isolation)

- Pseudorapidity: $3.4 < \eta < 5.8$
- Unique capabilities to measure small-x gluon distributions via prompt photon production
- Measurements with mesons, photons, and jets to explore the dynamics of
- hadronic matter at small x down to $\sim 10^{-6}$

34

ALICE3:

- Compact all-silicon tracker with high-resolution vertex detector
- → Superconducting magnet system
- → Particle identification over large acceptance
- → Fast readout and online processing
- Studies of A–A collisions at luminosities a factor of 5-10 times higher than possible now.
- The excellent timing resolution (~ 20 ps) will provide particle identification information.
- Ultrasoft region of phase space
 - Production of very low transverse momentum lepton pairs, photons and hadrons.
 - Heavy-flavour, quarkonia, multi-charm hadrons and heavy-flavour correlations
 - Low-mass dileptons
 - Soft and ultra-soft photons

arXiv:1902.01211v2 https://indico.cern.ch/event/1063724/

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 123/4

• Pb–Pb/Xe–Xe collisions:

- Charm diffusion and energy loss constrained by azimuthal anisotropies and nuclear modification factor of heavy-flavour hadrons
- Beauty measurements indicate partial thermalisation and weaker energy loss
- Quarkonium indicating strong regeneration component at late stage
- Radial flow depends exclusively on the multiplicity (not collision system dependent)
- Elliptic flow depends also on the initial eccentricities of the collision region

• pp and p–Pb collisions:

- Similar behaviour as in Pb–Pb collisions for hadronization and azimuthal anisotropies;
- Hypertriton explained by 2-body coalescence models
- Dead cone effect was experimentally measured
- Indication of an attractive interaction for $p-\Omega^2$ and $p-\Xi^2$ pairs that exceeds the Coulomb force
- \circ Hint of multi-parton interactions affecting the J/ ψ yield.
- Future perspectives:
 - High precision data coming soon! Stay tuned!

Thank you for your attention!

Cristiane Jahnke

Cristiane Jahnke

Universidade Estadual de Campinas

SILAFAE 12^{3/4}

Friday, 12 November 2021

36

37

LS2 upgrade

- new TPC detectors (GEMs)
- new silicon trackers (MFT & ITS2)
- new Fast Interaction Trigger (FIT)
- new online/offline system (O²)
- new readout for all detectors

SILAFAE 12^{3/4}