

Measuring sleptons at the ILC

Joel Jones-Pérez Pontificia Universidad Católica del Perú (PUCP)

> Based on the following work: N. Cerna, T. Faber, JJP, W. Porod (1705.06583) N. Cerna, JJP, J. Masias, W. Porod (2102.06236)

SILAFAE XII³/₄ 10 / 10 / 2021

Natural SUSY

- Searches for vanilla SUSY (for example, the CMSSM) have placed stringent bounds on SUSY masses.
- But SUSY cannot be too heavy! Little hierarchy problem!
- Motivates searching for situations where
 SUSY can hide. Examples of these are
 compressed spectra and RPV.

Low-Scale Seesaw

 The Type-I Seesaw is probably the most popular way of generating neutrino masses.

$$\mathcal{L} = \mathcal{L}_{\rm SM} - Y_{\nu} \left(\bar{L} \cdot \tilde{H} \,\nu_R \right) - \frac{1}{2} M_R \left(\bar{\nu}_R \,\nu_R^c \right)$$

$$m_{\nu} \sim \frac{v^2}{2} Y_{\nu}^* M_R^{-1} Y_{\nu}^{\dagger}$$

 Searches for heavy neutrinos have been carried out at the LHC, but all compatible with background.

Low-Scale SUSY Seesaw

- What if we combine the MSSM and the Seesaw? Does that affect constraints on SUSY particles?
- For GUT-scale (s)neutrinos, LHC phenomenology is not too strongly affected.

Low-Scale SUSY Seesaw

- What if we combine the MSSM and the Seesaw? Does that affect constraints on SUSY particles?
- For GUT-scale (s)neutrinos, LHC phenomenology is not too strongly affected.
- What if we have a low-scale seesaw? We could have an R-sneutrino LSP!
- What if we want the model to be as natural as possible?

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Objective: Explore collider sensitivity to sleptons and / or electroweakinos (since R-sneutrinos couple exclusively to these sectors)

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Objective: Explore collider sensitivity to sleptons and / or electroweakinos (since R-sneutrinos couple exclusively to these sectors)

Possible hierarchy:

$$\begin{split} m_{\tilde{\nu}_{R}}^{2} < \mu < m_{\tilde{L}}^{2}, \, m_{\tilde{E}}^{2} \\ m_{\tilde{\nu}_{R}}^{2} < m_{\tilde{L}}^{2}, \, m_{\tilde{E}}^{2} < \mu \end{split}$$

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Objective: Explore collider sensitivity to sleptons and / or electroweakinos (since R-sneutrinos couple exclusively to these sectors)

- Set the R-sneutrino as the LSP.
- Keep μ as low as possible \rightarrow Higgsino-like electroweakinos.
- Objective: Explore collider sensitivity to sleptons and / or electroweakinos (since R-sneutrinos couple exclusively to these sectors)

Measuring sleptons at the ILC

Neutrino Sector

- Keep heavy neutrino masses at the GeV scale
 - R-sneutrino masses do not become too heavy
 - Correlations between SUSY and heavy neutrino searches?
- Enhance Yukawas of two R-(s)neutrinos.
 - Charged NLSP is not long-lived.
 - Correlations between SUSY and heavy neutrino searches?
- Set degenerate heavy neutrino masses, if enhanced $(M_5 = M_6 = 20 \,\text{GeV})$
 - Suppresses contribution to neutrinoless double beta decay
 - Keeps loop corrections to light neutrino masses under control

Joel Jones-Pérez

Measuring sleptons at the ILC

Sneutrino Sector

- Sneutrino mass matrix:
 - $M_{\tilde{\nu}}^2 = \begin{pmatrix} m_{\tilde{L}}^2 + \frac{1}{2}m_Z^2\cos 2\beta & 0\\ 0 & m_{\tilde{\nu}_R}^2 + M_R^{\dagger}M_R \end{pmatrix}$
- LR mixing very small! Mass eigenstates will be almost pure $ilde{
 u}_L$ or $ilde{
 u}_R$
- For simplicity, new sources of LNV are set to zero, and all parameters are assumed real. Soft masses are taken diagonal.

Slepton Sector

• Slepton hierarchy mainly from D-Terms:

$$m_{\tilde{\nu}_R} < m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_L} < m_{\tilde{\ell}_L, \tilde{\ell}_R} < m_{\tilde{\tau}_2}$$

Slepton Sector

Slepton hierarchy mainly from D-Terms:

$$m_{\tilde{\nu}_R} < m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_L} < m_{\tilde{\ell}_L, \tilde{\ell}_R} < m_{\tilde{\tau}_2}$$

• Decays into R – sneutrinos and on-shell bosons:

$$\tilde{\tau}_1^- \to \tilde{\nu}_R W^- \qquad \qquad \begin{array}{c} \tilde{\nu}_L \to \tilde{\nu}_R Z \\ \tilde{\nu}_L \to \tilde{\nu}_R h \end{array}$$

Slepton Sector

Slepton hierarchy mainly from D-Terms:

$$m_{\tilde{\nu}_R} < m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_L} < m_{\tilde{\ell}_L, \tilde{\ell}_R} < m_{\tilde{\tau}_2}$$

Decays into R – sneutrinos and on-shell bosons:

$$\tilde{\tau}_1^- \to \tilde{\nu}_R W^- \qquad \qquad \begin{array}{c} \tilde{\nu}_L \to \tilde{\nu}_R Z \\ \tilde{\nu}_L \to \tilde{\nu}_R h \end{array}$$

• Cascade decays (compressed):

$$\tilde{\tau}_2^- \to \tilde{\tau}_1^- Z^*$$

 $\tilde{\tau}_2^- \to \tilde{\nu}_L W^{-*}$

$$\tilde{\ell}_{L,R}^- \to \tilde{\nu}_L W^{-*}$$

Measuring sleptons at the ILC

Degenerate scenario at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above 250 GeV.

Joel Jones-Pérez

CMS Collaboration (1709.05406) CheckMATE (1709.05406 [hep-ph]) Measuring sleptons at the ILC

Prospects at the ILC

- The e⁺ e⁻ collisions would produce slepton pairs.
- Our analysis will be tailored for stau and L-snu production, leading to:

$$\tilde{\tau}_1^- \to \tilde{\nu}_R W^- \quad \tilde{\nu}_L \to \tilde{\nu}_R Z \quad \tilde{\nu}_L \to \tilde{\nu}_R h$$

- The hadronic decays of the SM bosons lead to final states with four jets and missing energy.
- We consider Type **B** polarization $(e_R^- e_L^+)$

Cutflow, 500 fb⁻¹ integrated luminosity, 300 GeV slepton mass

Scenario	SE
No cuts	14713
$E_{\rm miss} > 50 {\rm ~GeV}$	12941
Exactly four jets with $E > 20 \text{ GeV}$	4740
Exactly two reconstructed SM bosons	869
$E_{\rm lepton} < 25 {\rm GeV}$	862
$ \cos(\theta_{\rm miss}) < 0.99$	758
Efficiency (%)	5.2

SE:
$$m_{ ilde{E}_1}=m_{ ilde{L}_1}$$

Joel Jones-Pérez

Cutflow, 500 fb⁻¹ integrated luminosity, 300 GeV slepton mass

Scenario	SE	ST
No cuts	14713	14745
$E_{\rm miss} > 50 {\rm ~GeV}$	12941	12997
Exactly four jets with $E > 20 \text{ GeV}$	4740	3770
Exactly two reconstructed SM bosons	869	1092
$E_{\rm lepton} < 25 {\rm GeV}$	862	1084
$\left \cos(\theta_{\rm miss})\right < 0.99$	758	922
Efficiency (%)	5.2	6.3

SE:
$$m_{\tilde{E}_1} = m_{\tilde{L}_1}$$

ST: $m_{\tilde{E}_3} = m_{\tilde{L}_3}$

Joel Jones-Pérez

Cutflow, 500 fb⁻¹ integrated luminosity, 300 GeV slepton mass

Scenario	SE	ST
No cuts	14713	14745
$E_{\rm miss} > 50 {\rm ~GeV}$	12941	12997
Exactly four jets with $E > 20 \text{ GeV}$	4740	3770
Exactly two reconstructed SM bosons	869	1092
$E_{\rm lepton} < 25 {\rm GeV}$	862	1084
$ \cos(\theta_{\rm miss}) < 0.99$	758	922
Efficiency (%)	5.2	6.3

$$\begin{array}{lll} \text{SE:} & m_{\tilde{E}_1} = m_{\tilde{L}_1} \\ \text{ST:} & m_{\tilde{E}_3} = m_{\tilde{L}_3} \end{array}$$

All background: 417 events

Efficiency: 0.08%

Main sources: $t \, \bar{t}, \, Z \, W^+ W^-, \, 2\nu \, W^+ W^-$

Joel Jones-Pérez

Required luminosity (fb⁻¹) at ILC to get 5 σ

Reconstruct W boson and measure its energy.

Min / max values of W boson energy: **endpoints**, E_{B-} , E_{B+}

Joel Jones-Pérez

$$m_{\tilde{\ell}} = \frac{2E_{\text{beam}}}{E_{B+} + E_{B-}} E'_B$$
 Boson energy in slepton rest frame

Joel Jones-Pérez

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E'_B$$
 Boson energy in slepton rest frame

$$E'_B = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_B^2) \pm \sqrt{(E_{B+}^2 - m_B^2)(E_{B-}^2 - m_B^2)}}$$

$$m_{\tilde{\ell}} = \frac{2E_{\text{beam}}}{E_{B+} + E_{B-}} E'_{B}$$
Boson energy in slepton rest frame

$$E'_{B} = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_{B}^{2})} \pm \sqrt{(E_{B+}^{2} - m_{B}^{2})(E_{B-}^{2} - m_{B}^{2})}$$

$$m_{\tilde{\ell}} = \frac{2E_{\rm beam}}{E_{B+} + E_{B-}} E'_B$$
 Boson energy in slepton rest frame

$$E'_{B} = \frac{1}{\sqrt{2}} \sqrt{(E_{B+} E_{B-} + m_{B}^{2}) \pm \sqrt{(E_{B+}^{2} - m_{B}^{2})(E_{B-}^{2} - m_{B}^{2})}}$$

Need two datasets, for example, decays into *W* and *Z* bosons. Require that both datasets reproduce same LSP mass:

$$m_{\tilde{\nu}_R} = \sqrt{m_{\tilde{\ell}}^2 + m_B^2 - 2E_B'm_{\tilde{\ell}}}$$

Joel Jones-Pérez

Measuring sleptons at the ILC

Slepton Mass Reconstruction: Light Staus with 500 fb⁻¹

SM Background	Scenario	ST	Theory
$\tilde{\tau}_1 \tilde{\tau}_1$	$m_{\tilde{ au}_1}(\text{GeV})$	296.91 ± 10.69	294.47
$\tilde{v}_{L}\tilde{v}_{L}$	$m_{\tilde{\nu}_L} (\text{GeV})$	293.32 ± 3.61	293.37
Other SUSY	$m_{\tilde{\nu}_R} (\text{GeV})$	101.14 ± 1.36	101.98

Measuring sleptons at the ILC

Slepton Mass Reconstruction: Light Selectrons with 500 fb⁻¹

SM Background	Scenario	SE	Theory
$\tilde{v}_{L}\tilde{v}_{L}$	$m_{\tilde{\nu}_L} \; (\text{GeV})$	293.63 ± 3.12	293.37
■ ẽ _L ẽ _L + ẽ _R ẽ _R	$m_{\tilde{\nu}_R} (\text{GeV})$	100.52 ± 1.65	101.98

Conclusions

- The LHC is not really sensitive to SUSY models where $m_{\tilde{\nu}_R}^2 < m_{\tilde{L}}^2 = m_{\tilde{E}}^2 < \mu$, single slepton families constrained to be heavier than ~ 150 GeV.
- A 1 TeV run of the ILC can probe a much larger part of the parameter space, most of it leading to a discovery with less than 1000 fb⁻¹.
- Endpoint method can reconstruct masses with 500 fb⁻¹, as long as sleptons decay into on-shell SM bosons.

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Thanks!

Measuring sleptons at the ILC

Backup

Parameter scan set up in Amazon Web Service

Joel Jones-Pérez

Image Credit: Gabriel Paredes

Neutrino Sector

Joel Jones-Pérez

After diagonalizing the neutrino mass matrix:

3 active
$$v_{L}$$
 3 light v_{I} $U = \begin{pmatrix} U_{a\ell} & U_{ah} \\ U_{s\ell} & U_{sh} \end{pmatrix}$
3 sterile v_{R} 3 heavy v_{h}

Using a Casas-Ibarra parametrization, we can reconstruct the Yukawa matrices:

$$\begin{split} Y_{\nu} &= -i \frac{\sqrt{2}}{v_{u}} U_{\text{PMNS}}^{*} H^{*} m_{\ell}^{1/2} \left(m_{\ell} R^{\dagger} + R^{T} M_{h} \right) M_{h}^{-1/2} \bar{H} \\ H &\sim I \quad \bar{H} \sim I \end{split} \qquad \text{Complex orthogonal matrix} \end{split}$$

Casas, Ibarra (hep-ph/0103065)

Donini, Hernandez, Lopez-Pavon, Maltoni, Schwetz (1205.5230 [hep-ph])

Neutrino Sector

Yukawa couplings can be enhanced by taking a large γ_{56} .

$$(Y_{\nu})_{a5} = \pm (Z_a^{\rm NH})^* \sqrt{\frac{2m_3 M_5}{v_u^2}} \cosh \gamma_{56} e^{\mp i\rho_{56}}$$
$$(Y_{\nu})_{a6} = -i(Z_a^{\rm NH})^* \sqrt{\frac{2m_3 M_6}{v_u^2}} \cosh \gamma_{56} e^{\mp i\rho_{56}}$$

With this, the mass matrix gets a structure similar to the inverse seesaw.

Neutrino Sector

For definiteness, we set:

$$M_5 = M_6$$
 (So we do not exceed $0_{\nu\beta\beta}$)

$$M_{5,6} = 20 \,\, {
m GeV}$$
 (So they do not contribute much to R-sneutrino masses)

(So we do not exceed LFV)

Neutrino sector is **fixed**.

 $\gamma_{56} = 8$

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$\mathcal{V}^{soft} = \mathcal{V}^{soft}_{\text{MSSM}} + (m_{\tilde{\nu}_R}^2)_{ij}\tilde{\nu}^*_{R,i}\tilde{\nu}_{R,j} + \frac{1}{2}(B_{\tilde{\nu}})_{ij}\tilde{\nu}_{R,i}\tilde{\nu}_{R,j}$$
$$+ (T_{\nu})_{ij}\tilde{L}_i \cdot H_u \tilde{\nu}_{R,j}$$

Sneutrino Sector

We need to add new soft SUSY breaking terms:

$$\mathcal{V}^{soft} = \mathcal{V}^{soft}_{\text{MSSM}} + (m_{\tilde{\nu}_R}^2)_{ij}\tilde{\nu}^*_{R,i}\tilde{\nu}_{R,j} + \frac{1}{2}(B_{\tilde{\nu}})_{ij}\tilde{\nu}_{R,i}\tilde{\nu}_{R,j} + (T_{\nu})_{ij}\tilde{L}_i \cdot H_u \tilde{\nu}_{R,j}$$

Additional simplifications:

 $T_{
u}$ Assumed proportional to Y_v, so negligible

New source of LNV, taken equal to zero for this work

Joel Jones-Pérez

 $B_{\tilde{\nu}}$

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}} \qquad \qquad m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$$

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}} \qquad \qquad m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$$

Same contribution, assuming $m_{\tilde{L}}^2 = m_{\tilde{E}}^2$

$$(m_{\tilde{\ell}_R} - m_{\tilde{\nu}_L})_D \approx \frac{(-\sin^2 \theta_W - \frac{1}{2})m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

 $m_{\tilde{e}_R} > m_{\tilde{\nu}_{eL}} \qquad \qquad m_{\tilde{\mu}_R} > m_{\tilde{\nu}_{\mu L}}$

D-Term contribution to mass splitting:

$$(m_{\tilde{\ell}_L} - m_{\tilde{\nu}_L})_D \approx \frac{(\sin^2 \theta_W - 1)m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

$$m_{\tilde{e}_L} > m_{\tilde{\nu}_{eL}} \qquad \qquad m_{\tilde{\mu}_L} > m_{\tilde{\nu}_{\mu L}}$$

Same contribution, assuming $\ m_{ ilde{L}}^2 = m_{ ilde{E}}^2$

L - sneutrinos are lighter than charged sleptons

$$(m_{\tilde{\ell}_R} - m_{\tilde{\nu}_L})_D \approx \frac{(-\sin^2 \theta_W - \frac{1}{2})m_Z^2 \cos 2\beta}{2m_{\tilde{L}}} > 0$$

 $m_{\tilde{e}_R} > m_{\tilde{\nu}_{eL}} \qquad \qquad m_{\tilde{\mu}_R} > m_{\tilde{\nu}_{\mu L}}$

Measuring sleptons at the ILC

MSSM Slepton Sector

Decay modes for selectrons, smuons:

F-Term contribution to stau mass splitting:

$$(m_{\tilde{\tau}} - m_{\tilde{\nu}_L})_F \approx \pm \frac{m_{\tau} \mu \tan \beta}{2m_{\tilde{L}}} \qquad \begin{array}{c} m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_{\tau L}} \\ m_{\tilde{\tau}_2} > m_{\tilde{\nu}_{\tau L}} \end{array}$$

F-Term contribution to stau mass splitting:

$$(m_{\tilde{\tau}} - m_{\tilde{\nu}_L})_F \approx \pm \frac{m_{\tau} \mu \tan \beta}{2m_{\tilde{L}}} \qquad \begin{array}{c} m_{\tilde{\tau}_1} \sim m_{\tilde{\nu}_{\tau L}} \\ m_{\tilde{\tau}_2} > m_{\tilde{\nu}_{\tau L}} \end{array}$$

Slepton Production at the LHC

Drell-Yan production favours $\tilde{\nu}_L \, \tilde{\ell}_L$ initial state

Slepton Decay modes:

Selectrons, smuons:

Charged slepton starts a small cascade, involving L-sneutrino and very soft fermions

Final states have Z / h pairs, and missing energy due to R-sneutrino. Evaluated in CheckMATE.

Search for selectrons at LHC:

Search for selectrons at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above ~175 GeV.

Search for selectrons at LHC:

Projection at the end of LHC lifetime has a hard time extending the reach above ~175 GeV.

Slepton Decay modes:

Staus:

Lightest stau decays directly into R-sneutrino.

Final states have Z / h + W, and missing energy due to R-sneutrino.

Measuring sleptons at the ILC

Search for staus at LHC:

Multi-lepton searches by CMS still most sensitive.

Measuring sleptons at the ILC

Sleptons at the ILC

• The e⁺ e⁻ collisions would produce slepton pairs.

- Cross-section at the ILC (1 TeV), according to WHIZARD.
- Type **B** polarization. $(e_R^- e_L^+)$

Getting the endpoints

1. Group all events into W-like, Z-like, and h-like datasets:

$$\chi_W^2(m_1, m_2) = \frac{(m_1 - m_W)^2 + (m_2 - m_W)^2}{\sigma^2}$$

$$\chi_Z^2(m_1, m_2) = \frac{(m_1 - m_Z)^2 + (m_2 - m_Z)^2}{\sigma^2}$$

$$\chi_h^2(m_1, m_2) = \frac{(m_1 - m_h)^2 + (m_2 - m_h)^2}{\sigma^2}$$

Getting the endpoints

2. Generate a SM distribution from MC events, by fitting parameters:

$$f_{SM}(E; E_{\rm SM-}, a_{0-2}, \sigma_{\rm SM}, \Gamma_{\rm SM}) \qquad \text{Voigt function} \\ = \int_{E_{\rm SM-}}^{\infty} (a_2 E'^2 + a_1 E' + a_0) V(E' - E, \sigma_{\rm SM}, \Gamma_{\rm SM}) dE'$$

 Generate 100 samples of SM background using SM distribution.
 Implement statistical errors by modifying number of events in each bin using a Poisson distribution.

Getting the endpoints

4. For each SM sample, fit the sum of SUSY and SM spectra:

$$f(E; E_{B-}, E_{B+}, b_{0-2}, \sigma_1, \Gamma_1)$$

$$= f_{SM}(E; E_{SM-}, a_{0-2}, \sigma_{SM}, \Gamma_{SM}) + \int_{E_{B-}}^{E_{B+}} (b_2 E'^2 + b_1 E' + b_0) V(E' - E, \sigma_1, \Gamma_1) dE'$$

5. Get endpoints from fit. Use 100 samples to get average and standard deviation.

6. For h-like events, background is negligible. Divide into subsets.

Required luminosity (fb⁻¹) at ILC to get 5 σ

Measuring sleptons at the ILC

Slepton Mass Reconstruction: Degenerate Soft Masses with 500 fb⁻¹

SM Background	Scenario	DEG	Theory
$\tilde{\tau}_1 \tilde{\tau}_1$	$m_{\tilde{\ell}_1}(\text{GeV})$	290.51 ± 10.01	294.47
$\tilde{v}_{L}\tilde{v}_{L}$	$m_{\tilde{\nu}_L}$ (GeV)	293.41 ± 2.15	293.37
Other SUSY	$m_{\tilde{\nu}_R} \; (\text{GeV})$	100.05 ± 0.67	101.98

Maximum dark matter mass: 0.7 – 250 GeV

Joel Jones-Pérez

Maximum dark matter mass: 0.7 – 250 GeV

Too small thermal relic density (Higgsino NLSP)

Joel Jones-Pérez

Joel Jones-Pérez

Maximum dark matter mass: 0.7 – 250 GeV Too small thermal relic density 400 (Higgsino NLSP) 250 Too small thermal relic density 350 10 (L-sneutrino NLSP) 1 GeV300 Would require a $\tilde{m_{\tilde{v}_{6,6}}}$ negative soft mass Ruled out by LHC (Higgsino lighter 150 than L-slepton) LHC @ 300 fb⁻¹ 100 200 300 400 500 $m_{\tilde{i}}(\text{GeV})$

Joel Jones-Pérez

Maximum dark matter mass: 0.7 – 250 GeV

Joel Jones-Pérez

 $m_{\tilde{L}} = 323 \,\mathrm{GeV}$ $m_{\tilde{\nu}_{R_{5,6}}} = 302 \,\mathrm{GeV}$

Joel Jones-Pérez

Measuring sleptons at the ILC

ATLAS Collaboration (ATLAS-CONF-2016-096) CheckMATE (1611.09856 [hep-ph])

Measuring sleptons at the ILC

 $\mathcal{L} = 13.3 \, \text{fb}^{-1}$

Scenario 1

$$\mu = m_{\tilde{\nu}_R} + 25 \,\text{GeV}$$
Ruled out
Allowed

1

Joel Jones-Pérez

ATLAS Collaboration (ATLAS-CONF-2016-096) CheckMATE (1611.09856 [hep-ph])

Joel Jones-Pérez

ATLAS Collaboration (ATLAS-CONF-2016-096)

CheckMATE (1611.09856 [hep-ph])